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Abstract 18 

Mineral derangements are a common consequence of chronic kidney disease (CKD). 19 

Despite the well-established role of phosphorus in the pathophysiology of CKD, the 20 

implications of calcium disturbances associated with CKD remain equivocal. Calcium plays 21 

an essential role in numerous physiological functions in the body and is a fundamental 22 

structural component of bone. An understanding of calcium metabolism is required to 23 

understand the potential adverse clinical implications and outcomes secondary to the 24 

(mal)adaptation of calcium-regulating hormones in CKD. The first part of this two-part review 25 

covers the physiology of calcium homeostasis (kidneys, intestines and bones) and details the 26 

intimate relationships between calcium-regulating hormones (parathyroid hormone, calcitriol, 27 

fibroblast growth factor 23, α-Klotho and calcitonin) and the role of the calcium-sensing 28 

receptor.  29 
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Introduction 32 

The kidneys have a key role in the regulation of phosphate and calcium homeostasis. 33 

In chronic kidney disease (CKD), phosphate excretion decreases as a consequence of reduction 34 

in glomerular filtration rate (GFR) due to the declining number of functioning nephrons 35 

(Slatopolsky et al., 1968a, 1968b). Phosphate retention stimulates the secretion of phosphaturic 36 

hormones, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), both directly 37 

and indirectly via the inhibition of renal production of calcitriol (a.k.a. 1,25 38 

dihydroxycholecalciferol or 1,25 dihydroxyvitamin D3) (Liu et al., 2006a; Centeno et al., 2019). 39 

In early stage CKD, increased PTH and FGF23 production, as a “trade-off” mechanism, allows 40 

maintenance of plasma phosphate concentration within physiological limits by increasing the 41 

fractional excretion of phosphorus from the remaining nephrons (Gutierrez et al., 2005). 42 

Secondary renal hyperparathyroidism (SRHP) gradually develops as a consequence of 43 

phosphorus retention and decreased renal production of calcitriol (Slatopolsky et al., 1971; 44 

Szabo et al., 1989). These hormonal alterations, in response to phosphate retention, also have 45 

reciprocal influences on calcium regulation. Since calcium and phosphate are integral inorganic 46 

components of bone, disturbances in these minerals play a significant role in driving vascular 47 

and soft tissue calcification in CKD.  48 

 49 

Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic disorder 50 

that encompasses a complex interplay between mineral and hormonal metabolism, leading to 51 

bone remodelling and extraskeletal calcification, occurring as a result of CKD. CKD-MBD 52 

represents a combination of three closely interrelated disease conditions which may be 53 

manifested by one or a combination of the following: (1) laboratory abnormalities indicative 54 

of disturbed mineral and bone metabolism, including calcium, phosphorus, FGF23, PTH, 55 

vitamin D, osteocalcin, runt-related transcription factor 2 (Runx2), and alpha-1 type 1 collagen 56 
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concentrations and alkaline phosphatase (ALP) activity; (2) calcification of the vasculature and 57 

other soft tissues; (3) abnormalities in skeletal morphology, representing the presence of renal 58 

osteodystrophy (Moe et al., 2006). Ever since the introduction of the concept of CKD-MBD in 59 

human medicine, its definition and classification have advanced the development of evidence-60 

based clinical practice guidelines and provided a new framework for diagnostic and therapeutic 61 

approaches for the management of CKD-MBD. This has also become an increasingly 62 

recognised phenomenon in veterinary medicine (Geddes et al., 2013).  63 

 64 

This article, the first part of the two-part review of CKD-MBD with a focus on the cat, 65 

describes the physiology of calcium homeostasis focusing on the hormonal regulation. Since 66 

basic science research is has been more thoroughly explored in humans and rodent studies, 67 

information on calcium physiology presented in this article is based on our current knowledge 68 

from these species, with specific reference to feline data where they are available (clearly 69 

indicated where that is the case). Although it is anticipated that there will be a degree of 70 

homology in many of the physiological pathways pertaining to calcium homeostasis amongst 71 

mammals particularly at the level of hormonal regulation, inter-species differences exist and 72 

extrapolation from one species to another cannot be relied upon. A comprehensive 73 

understanding of these pathways can consequentially enable understanding of the 74 

pathophysiological mechanisms associated with calcium disorders in feline CKD-MBD, 75 

discussed in detail in part two.  76 

 77 

Calcium homeostasis 78 

 Calcium is a fundamental structural component of bone and is involved in crucial 79 

physiological functions, such as cellular signalling, muscle contraction, blood coagulation and 80 

neuronal function (Reid et al., 2016). In adult humans, the majority of calcium (99%) is stored 81 



` 

 5 

in bone as hydroxyapatite (Ca10(PO4)6(OH)2), with only 1% present in extracellular fluid 82 

(including plasma) and intracellular fluid (Zhou et al., 2013). Plasma total calcium 83 

concentrations vary slightly across different species: human, 2.15–2.57 mmol/L (8.6–10.3 84 

mg/dL) (Eknoyan et al., 2003); cat, 2.05–2.95 mmol/ (8.2–11.8 mg/dL) (van den Broek et al., 85 

2017); dog, 2.25–3.00 mmol/L (9–12 mg/dL) (Schenck and Chew, 2005). In plasma, calcium 86 

is distributed in three fractions with small variations between species: free ionised (52–56%), 87 

protein-bound (34–40%), complexed (8–10%) (Goldstein, 1990; Schenck et al., 1996). This 88 

distribution is subject to variation depending on physiological conditions such as acid-base 89 

status, plasma protein concentrations, and anion concentrations. In the presence of acidaemia, 90 

protein-bound calcium decreases as calcium and hydrogen ions compete for the negatively-91 

charged protein binding sites; concentrations of ionised and complex calcium may therefore be 92 

increased (Toffaletti and Abrams, 1989). Approximately 80% of protein-bound calcium is 93 

associated with plasma albumin, the remainder being bound to various globulins (Moore, 1971). 94 

The remaining calcium is complexed with anions, including bicarbonate, phosphate, lactate 95 

and citrate (Takano et al., 2012). Plasma ionised calcium is the biologically active form and 96 

subject to rigorous homeostatic control to maintain concentrations in a narrow range; this will 97 

be discussed in detail below. 98 

 99 

Calcium homeostasis is achieved by a complex interplay between four organ systems: 100 

kidney, gastrointestinal tract, parathyroid gland, and bone (Fig. 1). Table 1 provides a summary 101 

of the hormonal regulation of calcium. 102 

 103 

Renal calcium handling 104 

In the kidney, only ionised and complexed calcium fractions are freely filtered and able 105 

to reach the lumen of the renal tubules. In rodents, under normal conditions 98% of filtered 106 
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calcium undergoes tubular reabsorption (Peacock and Nordin, 1968), with proximal 107 

convoluted tubules (PCTs) absorbing 60–70%, thick ascending limbs (TAL) of Henle’s loops 108 

absorbing 20–25% and distal convoluted tubules (DCT) 5–10% (Lassiter et al., 1963). 109 

 110 

Renal reabsorption of calcium involves two major pathways: paracellular and 111 

transcellular (Fig. 2). Movement of calcium through tight junctions between epithelial cells is 112 

defined as the paracellular pathway, while transcellular absorption, comprising calcium 113 

transport through tubular epithelial cells, is more complicated. At the level of the PCT and 114 

TAL calcium movement is primarily paracellular, driven by passive diffusion or solvent drag 115 

down an electrochemical gradient. At the level of the DCT calcium movement is primarily 116 

transcellular, with passive entry across the apical membrane, intracellular translocation 117 

mediated by calcium-binding proteins and buffers, and active extrusion across the basolateral 118 

membrane. It is this DCT transcellular pathway that is crucial to the fine-regulation of renal 119 

calcium reabsorption, regulated by PTH, calcitonin, calcitriol, the FGF23-Klotho endocrine 120 

axis, and extracellular calcium (via the calcium-sensing receptor; CaSR) (Sherwood, 1968; 121 

Shimizu et al., 1990; Hoenderop et al., 2001).  122 

 123 

Gastrointestinal calcium handling 124 

Similar to renal reabsorption of calcium, gastrointestinal absorption occurs across the 125 

intestinal mucosa either by a passive, paracellular process or an active, hormonal-dependent, 126 

transcellular process (Bronner et al., 1986). In healthy humans, approximately 35% of dietary 127 

calcium is absorbed, primarily within the small intestine; however, this is dependent upon 128 

intestinal transit time and calcium solubility, which itself is influenced by the presence of 129 

various anions (e.g. dietary phosphate) and pH (Shiga et al., 1987; Duflos et al., 1995). Calcium 130 

solubility decreases as pH increases, which is seen as chyme moves from the duodenum (pH 131 
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6.0) to the distal ileum (pH 7.5) (Duflos et al., 1995). The transcellular pathway accounts for 132 

most intestinal calcium absorption when dietary intake is low. This process predominates in 133 

the duodenum, where vitamin D receptors (VDR) are highly expressed under the influence of 134 

calcitriol (Van Cromphaut et al., 2001; Xue and Fleet, 2009). In contrast, passive paracellular 135 

calcium diffusion down a chemical gradient occurs throughout the intestinal tract. This process 136 

is in proportion to the transit time of the chyme in each intestinal segment and has been show 137 

to occur predominantly in the ileum in rats and humans during conditions of normal dietary 138 

calcium intake (Marcus and Lengemann, 1962; Pansu et al., 1993). Tight junction proteins, 139 

claudins-2, -12 and -15, mediate intestinal paracellular calcium transport (Fujita et al., 2008). 140 

Both paracellular and transcellular transport occur in the caecum and ascending colon, which 141 

accounts approximately 10% of dietary calcium uptake (Petith and Schedl, 1976; Barger-Lux 142 

et al., 1989). Intriguingly, recent studies demonstrated a linear relationship between dietary 143 

calcium intake and faecal calcium excretion in adult cats and dogs (Mack et al., 2015; Paßlack 144 

et al., 2016), suggesting a lack of adaptability in intestinal calcium absorption following acute 145 

alterations in dietary intake at least. This is in contrast to the situation in humans and rodents, 146 

where a non-linear relationship between dietary calcium intake and faecal calcium excretion is 147 

seen (Cashman and Flynn, 1996; Brown et al., 2005). This may reflect a comparatively minor 148 

role of diet-dependent adaptation in calcium digestibility in contributing to the maintenance of 149 

calcium homeostasis in cats. 150 

 151 

Bone calcium handling 152 

Calcium and phosphorus are integral components of bone. Bone is a dynamic tissue 153 

continually remodelling in adults to maintain skeletal integrity through the opposing activities 154 

of osteoblasts (forming new bone) and osteoclasts (resorbing bone), and under the tight control 155 
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of calcium-regulating hormones, including PTH, calcitriol, FGF23 and calcitonin (Holtrop et 156 

al., 1981; Chambers and Moore, 1983; Wang et al., 2008; Ben-awadh et al., 2014). 157 

 158 

Regulation of plasma calcium concentration 159 

Parathyroid hormone (PTH) 160 

Parathyroid hormone is an 84-amino-acid peptide, synthesised and released by 161 

parathyroid chief cells in response to ionised hypocalcaemia (Habener et al., 1971; D’Amour 162 

et al., 1986). The PTH sequence is conserved among mammalian species, with >83% 163 

homology between feline and human PTH (Toribio et al., 2002). Both whole (amino acids 1 to 164 

84) and fragmented (amino acids 7 to 84) PTH molecules circulate in the body (Bringhurst et 165 

al., 1988). It is imperative to differentiate these because whole PTH is the biologically active 166 

form, whereas fragmented PTH may partially antagonise the classic biological activities of 167 

PTH (Nguyen-Yamamoto et al., 2001). Accumulation of PTH fragments, due to reduced 168 

clearance, can also occur in kidney disease (Brossard et al., 2000). PTH increases plasma 169 

calcium concentration by stimulating calcium reabsorption in the TAL of the loop of Henle 170 

and the DCT (Gesek and Friedman, 1992) and activating calcitriol production, which enhances 171 

intestinal calcium absorption. Increased PTH concentrations typically occur when the GFR 172 

drops below 60 mL/min/1.73m2 in humans (Levin et al., 2007). PTH secretion is induced by 173 

phosphate retention, decreased calcitriol synthesis, and hypocalcaemia resulting from reduced 174 

renal function (Yamamoto et al., 1989; Slatopolsky et al., 1996; Martinez et al., 1997). PTH 175 

secretion is suppressed by FGF23 and, potentially, α-Klotho (Ben-Dov et al., 2007; Krajisnik 176 

et al., 2007; Krajisnik et al., 2010; Fan et al., 2018).   177 

 178 

PTH stimulates transcellular calcium reabsorption in the DCT by activation of transient 179 

receptor potential vanilloid subtype 5 and 6 (TRPV5 and TRPV6) via protein-kinase A-180 
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mediated phosphorylation, the rate-limiting step in calcium entry as established in rodent 181 

models (Groot et al., 2009). PTH also promotes paracellular calcium transport in the TAL by 182 

suppressing claudin-14 expression (Sato et al., 2017), a tight-junction protein that acts as 183 

calcium barrier between renal tubular epithelial cells (Gong et al., 2012). 184 

 185 

PTH enhances intestinal calcium absorption indirectly via upregulation of calcitriol 186 

production by stimulating and suppressing renal activities of 1α-hydroxylase and 24-187 

hydroxylase, respectively (Zierold et al., 2003). Direct actions of PTH on intestinal calcium 188 

absorption have previously been postulated (Nemere and Norman, 1986), and supported by the 189 

localisation of PTH receptor (PTHR1) to the basolateral membranes of intestinal epithelial 190 

cells in rats (Gentili et al., 2003). However, the exact mechanism of activity of PTH directly 191 

on the intestines and physiological significance remain unclear as does whether species 192 

differences are present. 193 

 194 

PTH is central to movement of calcium into and out of bone, as well as bone 195 

remodelling, in the normal animal. PTH promotes bone resorption, leading to bone calcium 196 

efflux, via the indirect activation of osteoclast activity through increased expression of receptor 197 

activator of nuclear factor kappa-B ligand (RANKL) on osteoblasts and osteocytes (McSheehy 198 

and Chambers, 1986; Ben-awadh et al., 2014). Persistent hyperparathyroidism increases bone 199 

calcium efflux and may cause several catabolic alterations in cortical bones, such as reduced 200 

bone mineral density and increased cortical porosity, resulting in decreased bone quality and 201 

increased fracture susceptibility (Parisien et al., 1990). In contrast, uraemia-induced over-202 

suppression of PTH and skeletal PTH resistance leads to the development of adynamic bone 203 

disease (Torres et al., 1995; Ballanti et al., 2001). Deterioration of bone quality, with increased 204 

bone resorption, is reported in cats with advanced stages of CKD (Shipov et al., 2014). 205 
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However, despite similarities in bone architecture and the pathophysiology of CKD-MBD 206 

between cats and humans (Hillier and Bell, 2007), in contrast to human patients, clinically 207 

apparent fractures are rare in cats with CKD, even at advanced stages. We speculate that the 208 

comparatively shorter lifespan, lower physiological loading (i.e. due to lower body mass), and 209 

distinct biomechanical characteristics of quadrupedism in cats contribute to this reduction in 210 

fracture risk associated with CKD. Current knowledge on the influence of CKD on bone 211 

remodelling in cats is limited and requires further investigation. 212 

 213 

Calcitriol 214 

The concentration of calcitriol, the biologically active form of vitamin D, is regulated 215 

by the relative expression of 1α-hydroxylase (CYP27B1) and 24-hydroxylase (CYP24A1). 216 

These two enzymes are expressed predominantly in the kidney and work reciprocally on 217 

vitamin D metabolism; 1α-hydroxylase mediates the production of calcitriol, while 24-218 

hydroxylase accelerates the degradation of calcitriol, as well as modifying calcidiol (a.k.a. 25-219 

hydroxycholecalciferol or 25-hydroxyvitamin D3) to 24,25-dihydroxycholecalciferol (a.k.a. 220 

24,25-dihydroxyvitamin D3) (Masuda et al., 2006; Urushino et al., 2009; Annalora et al., 2010). 221 

24,25-dihydroxycholecalciferol is relatively inactive and this conversion reduces the pool of 222 

calcidiol available for 1α-hydroxylation (Shinki et al., 1992). 1α-hydroxylase activity and 223 

expression is enhanced by PTH, calcitonin, and low dietary or extracellular calcium and 224 

phosphate, increasing calcitriol production (Ash, 1976; Murayama et al., 1999; Bland et al., 225 

2001). In contrast, FGF23 appears to enhance 24-hydroxylase expression and supresses 1α-226 

hydroxylase activity, reducing calcitriol production (Shimada et al., 2004b, 2004a). 227 

 228 

Calcitriol is a fundamental regulator of intestinal calcium absorption (Fig. 3). It 229 

promotes various steps in the transcellular transport of calcium across the intestinal epithelium 230 
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including: expression of calcium-selective channel proteins TRPV5 and TRPV6 on the apical 231 

membrane, which modulate calcium entry into the cell; synthesis of cytosolic calcium-binding 232 

protein calbindin-D9k, facilitating intracellular calcium translocation (Bronner et al., 1986); and 233 

expression and activity of calcium transporters plasma membrane calcium ATPase (PMCA1b) 234 

and sodium-calcium exchanger (NCX1), which are responsible for calcium extrusion across 235 

the basolateral membrane (Ghijsen et al., 1983; Freeman et al., 1995). It is important to note 236 

that cats have distinctively different vitamin D metabolism compared to humans and rodents. 237 

Vitamin D synthesis in cats depends exclusively on dietary intake as photosynthesis is inhibited 238 

as demonstrated by the very low 7-dehydrocholesterol (7-DHC) concentrations in the skin 239 

(Morris, 1999). In cats, studies have also highlighted potential species-related differences in 240 

the response of vitamin D to varying dietary calcium intake and identified a novel circulating 241 

vitamin D metabolite, C-3 epimer of calcidiol, in healthy adults (Paßlack et al., 2016; Sprinkle 242 

et al., 2018). Further work is required to fully elucidate the significance of C-3 epimer of 243 

calcidiol in feline calcium homeostasis. 244 

 245 

The majority of calcitriol’s biological effects are mediated through its binding to the 246 

VDR, with downstream modulation of transcription of vitamin D-related genes such as PTH 247 

(Jin et al., 1996; Liu et al., 1996). However, in vitro rodent studies have also revealed that 248 

calcitriol has transcription-independent (non-genomic) effects by binding to caveolae-249 

associated VDR via the activation of second messenger pathways (Wali et al., 1990). This 250 

stimulates exocytosis of secretory vesicles containing calcium channels, increasing their 251 

expression on the plasma membrane, and opening of expressed calcium channels, resulting in 252 

rapid calcium absorption (Zanello and Norman, 2004). Furthermore, calcitriol enhances 253 

paracellular calcium absorption by increasing expression of epithelial tight junction proteins 254 

claudin-2, -12 and -15, that form calcium-permeable channels that function through both 255 
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passive diffusion and solvent drag mechanisms (Fig. 3) (Fujita et al., 2008; Chatterjee et al., 256 

2019). 257 

 258 

Similar to PTH, calcitriol stimulates transcellular reabsorption of calcium in the DCT. 259 

This is achieved via upregulated expression of calcium channels (TRPV5 and TRPV6) on the 260 

apical surface (Hoenderop et al., 2001), cytosolic proteins calbindin-D28k and -D9k, and 261 

PMCA1b and NCX1 on the basolateral surface (Hoenderop et al., 2002).  262 

 263 

The actions of calcitriol on bone are poorly understood. In rodent models, it appears to 264 

stimulate both formation and resorption of bone, dependent upon the relative concentrations of 265 

calcium and calcitriol, the chronicity of these relative concentrations, and the differences in 266 

RANKL/osteoprotegerin ratio (Holtrop et al., 1981; Simonet et al., 1997; Li et al., 2000; 267 

Harada et al., 2012; Nakamichi et al., 2017). Calcitriol is essential for osteoblast differentiation 268 

and promotes bone formation by the calcification of osteoid tissue. Long-term treatment of 269 

mice with near-physiological doses of vitamin D (50 ng/kg/day eldecalcitol) increased bone 270 

mineral density by suppressing bone resorption (Harada et al., 2012; Nakamichi et al., 2017). 271 

In contrast, bolus administration of supra-physiological doses of calcitriol (1.5 μg/kg/day) for 272 

2–4 days enhanced osteoclastic bone resorption through upregulation of RANKL by osteoblast 273 

lineage cells (Sato et al., 2007). In addition, during calcium depletion states, calcitriol 274 

synergises with high concentrations of PTH to induce calcium mobilisation from bone by 275 

stimulating osteoclastogenesis and bone resorption, as well as inhibiting bone matrix 276 

mineralisation to prevent calcium incorporation into bone (Lieben et al., 2012). 277 

 278 

FGF23-α-Klotho endocrine axis 279 
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FGF23 is primarily produced by osteocytes and osteoblasts. Its production is stimulated 280 

by calcitriol and PTH, and potentially regulated by chronic dietary phosphate loading, albeit 281 

the phosphate-sensing mechanism by which this occurs is still unclear (Bai et al., 2004; Saito 282 

et al., 2005; Trautvetter et al., 2016). Increasing evidence from humans and rodent models 283 

suggests FGF23 production is also directly stimulated by increased dietary or serum calcium 284 

concentrations (Shimada et al., 2005; Rodriguez-ortiz et al., 2012; Di Giuseppe et al., 2015), 285 

and potentially by α-Klotho (Smith et al., 2012; Xiao et al., 2019). FGF23 is a potent 286 

phosphaturic hormone (Bai et al., 2004), acting via decreased expression of renal sodium 287 

phosphate cotransporters (NaPi-2a/-2c) (Shimada et al., 2004c, 2004a). It also exerts powerful 288 

regulatory effects on calcium homeostasis in a Klotho-dependent manner (Alexander et al., 289 

2009) which is discussed further below.  290 

 291 

In general, FGF23 exerts its biological functions through interacting with the α-Klotho-292 

FGF receptor (FGFR) complex, while membrane-bound α-Klotho protein acts as a co-factor to 293 

enhance ligand-receptor affinity (Goetz et al., 2007). α-Klotho binding converts FGFR1(IIIc), 294 

a canonical receptor for various fibroblast growth factors, to a receptor with strong affinity for 295 

FGF23 specifically (Urakawa et al., 2006). The C-terminal region of FGF23 mediates binding 296 

to the FGFR-Klotho complex, which, in turn, induces FGFR dimerisation and initiates the 297 

MAPK cascade, including downstream activation of extracellular signal-regulated kinases 1/2 298 

(ERK1/2) and serine/glucocorticoid-regulated kinase-1 (SGK-1) (Kouhara et al., 1997; 299 

Andrukhova et al., 2012). In the kidney, SGK-1 subsequently activates with no lysine kinase 4 300 

(WNK4), which is critically involved in the regulation of TRPV5 trafficking from the Golgi 301 

apparatus to the DCT apical plasma membrane, and ultimately calcium reabsorption (Fig. 4) 302 

(Andrukhova et al., 2014). It is also suggested that activation of WNK4, as a result of FGF23 303 

signalling, could influence plasma membrane expression of other ion transporters in the DCT, 304 
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including sodium-chloride co-transporter (NCC) and renal outer medullary potassium channel 305 

(ROMK1) (Ring et al., 2007; Andrukhova et al., 2014). 306 

 307 

FGF23 decreases intestinal absorption of calcium, both directly, via an unknown 308 

mechanism, and indirectly by suppressing calcitriol production by the kidney via simultaneous 309 

downregulation of 1α-hydroxylase and upregulation of 24-hydroxylase (Shimada et al., 2004b, 310 

2004a; Gutierrez et al., 2005; Khuituan et al., 2012). Using mouse models of 311 

hypoparathyroidism and hypophosphataemic rickets, studies have shown that calcitriol is a 312 

potent stimulator of FGF23 synthesis in bone (Liu et al., 2006b), thereby maintaining a 313 

negative feedback loop. Apart from its fundamental role in acting as a FGFR co-factor 314 

promoting trafficking of TRPV5, secreted α-Klotho is involved in TRPV5 stabilisation and 315 

maintenance of renal calcium permeability and reuptake in an FGF23-independent manner 316 

(Chang et al., 2005; Cha et al., 2008). This is mediated via the removal of the sialic acid moiety 317 

from N-glycan of TRPV5, exposing the underlying disaccharide N-acetyl-lactosamine that 318 

then binds to galectin-1 at the extracellular surface, enhancing retention of TRPV5 at this 319 

position (Cha et al., 2008). In α-Klotho knock-out mice renal calcium reabsorption is impaired 320 

(Alexander et al., 2009). 321 

 322 

α-Klotho is also important in intestinal calcium absorption. Similar to its effects on 323 

renal TRPV5, α-Klotho enhances intestinal calcium absorption by increasing the activity of 324 

TRPV6. (Lu et al., 2008). Similar to FGF23, α-Klotho inhibits calcitriol synthesis by 325 

suppressing 1α-hydroxylase activity (Woudenberg-Vrenken et al., 2012). Absence of α-Klotho 326 

in mice results in increased serum calcitriol concentrations through upregulation in 1α-327 

hydroxylase, together with increased TRPV6 and calbindin-D9K mRNA expression, and 328 

increased serum calcium concentrations (Yoshida et al., 2002; Tsujikawa et al., 2003; 329 
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Alexander et al., 2009). In mice lacking both α-Klotho and 1α-hydroxylase duodenal TRPV6 330 

and calbindin-D9K mRNA expression and serum calcium concentration were significantly 331 

reduced, suggesting calcitriol is responsible for the phenotype (hypercalcaemia, 332 

hyperphosphataemia, soft tissue calcification and bone abnormalities) observed in α-Klotho-333 

knockout mice and that the effects of α-Klotho on calcium homeostasis is highly dependent on 334 

calcitriol (Woudenberg-Vrenken et al., 2012).  335 

 336 

Similar to the effects of FGF23, in mouse and human renal cells mRNA expression of 337 

both membrane-bound and secreted isoforms of α-Klotho was stimulated by calcitriol (Forster 338 

et al., 2011). Whilst in cow parathyroid and mouse kidney cells, α-Klotho mRNA expression 339 

was downregulated by FGF23 in a concentration-dependent manner (Marsell et al., 2008; 340 

Krajisnik et al., 2010); suggesting a counter-regulatory mechanism to attenuate the 341 

physiological and pathological activities of FGF23. Cow parathyroid α-Klotho mRNA 342 

expression was downregulated in response to increasing calcium concentrations in the culture 343 

medium, supporting the observation of an inverse relationship between α-Klotho mRNA 344 

expression and serum calcium concentrations in human patients with primary 345 

hyperparathyroidism (Björklund et al., 2008). Although it is apparent from the literature that 346 

α-Klotho is critically involved in calcium homeostasis, the way in which α-Klotho secretion is 347 

regulated and integrated into the calcium homeostatic system remains to be delineated.  348 

 349 

Increasing evidence has shown that FGF23 may play a role in regulating bone 350 

mineralisation in osteocytes in a paracrine/autocrine manner (Sitara et al., 2008; Lu and Feng, 351 

2011). Pyrophosphate is a key inhibitor of the mineralisation process; FGF23 was shown to 352 

increase pyrophosphate concentrations via the suppression of tissue nonspecific alkaline 353 

phosphate (TNAP) activity in an α-Klotho-independent manner, leading to the development of 354 
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mineralisation defect in mice (Murali et al., 2016a). α-Klotho-knockout mice display 355 

osteopenia and osteoporosis, a skeletal disease prevented by α-Klotho overexpression (Kuro-o 356 

et al., 1997; Xiao et al., 2019). α-Klotho is expressed in osteocytes, albeit at approximately 500 357 

times lower than in the kidneys (Rhee et al., 2011). Osteocytic α-Klotho has a negative 358 

influence on bone formation, potentially in cooperation with FGF23 (Smith et al., 2012; 359 

Komaba et al., 2017). Recently, it is suggested that the low-turnover osteoporotic phenotype 360 

seen in α-Klotho-knockout mice was not a direct result of α-Klotho deficiency in osteocytes, 361 

but a consequence of overproduction of calcitriol and inhibition of PTH secondary to the 362 

disrupted mineral metabolism (Murali et al., 2016b; Komaba et al., 2017). Additional 363 

investigations are required to better elucidate the functional role of α-Klotho on bone 364 

metabolism.  365 

 366 

Calcitonin 367 

Calcitonin is a 32 amino acid peptide hormone, secreted from the parafollicular cells of 368 

the thyroid gland in response to increased blood calcium concentration (Potts, 1992). 369 

Calcitonin antagonises PTH and protects against development of acute hypercalcaemia 370 

(Rodriguez et al., 1991). Its primary effect is to inhibit osteoclastic bone resorption, thereby 371 

preventing calcium efflux from bone (Chambers and Moore, 1983). A reciprocal relationship 372 

exists between calcitonin and calcitriol; calcitonin stimulates calcitriol synthesis, which 373 

enhances intestinal calcium absorption, while calcitriol suppresses calcitonin secretion 374 

(Kawashima et al., 1981; Jaeger et al., 1986). 375 

 376 

In contrast, calcitonin was shown to stimulate renal calcium reabsorption in rodents, 377 

via an unknown mechanism, independent of TRPV5/6 (Carney and Thompson, 1981; Elalouf 378 

et al., 1983; Hsu et al., 2010). However, with discordant published findings, particularly in 379 
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non-rodent species, calcitonin’s hypocalciuric effect remains controversial (Clark and Kenny, 380 

1969; Cochran et al., 1970; Quamme, 1981; Shimizu et al., 1990). There is also no consensus 381 

as to the physiological significance of calcitonin in adult mammals. This may be attributed, in 382 

part, to species variation (Marx and Aurbach, 1975). Indeed, various veterinary literature 383 

suggests that calcitonin plays a relatively minor role in calcium homeostasis in adult cats 384 

(Pineda et al., 2013; van den Broek et al., 2018).  385 

 386 

Calcium-sensing receptor (CaSR) 387 

The CaSR is a Class C G protein-coupled receptor that has ionised calcium as its 388 

primary ligand (Brown et al., 1993). CaSR are ubiquitously expressed in multiple organs, but 389 

are most abundant in parathyroid glands and kidneys (Kantham et al., 2009; Gal et al., 2010). 390 

The CaSR appears to play a vital role in maintaining serum calcium at physiological 391 

concentrations. In the thyroid gland, activation of CaSR, in response to increased extracellular 392 

ionised calcium concentration, suppresses PTH synthesis and secretion, whilst simultaneously 393 

stimulating calcitonin secretion (Garrett et al., 1995; Motoyama and Friedman, 2002). In rodent 394 

models at least, CaSR activation potentiates the inhibitory effects of calcitriol on PTH mRNA 395 

expression by upregulating VDR expression (Garfia et al., 2002). 396 

 397 

In the kidney, CaSR activation leads to reduced renal calcium reabsorption, in both a 398 

PTH-dependent and independent manner (Motoyama and Friedman, 2002; Kantham et al., 399 

2009; Loupy et al., 2012). CaSR expression is upregulated by calcitriol whilst CaSR activation 400 

increases VDR expression; hence further potentiate the action of calcitriol, suggesting a 401 

synergistic relationship between CaSR and VDR (Maiti and Beckman, 2007). There is a 402 

widespread distribution of CaSR along the nephron, with the highest expression within the 403 

TAL of human, mouse and rat (Graca et al., 2016). However, the localisation and cellular 404 



` 

 18 

polarisation of the CaSR varies in a similar way between different nephron segments in the 405 

mouse, rat, and human (Graca et al., 2016). In the PCT and collecting duct the CaSR is 406 

expressed predominantly on the apical surface, whereas in the TAL the CaSR is only expressed 407 

on the basolateral membrane. In the DCT, the CaSR is expressed on both apical and basolateral 408 

membranes, allowing the detection of calcium in both urine and the interstitial space (Sands et 409 

al., 1997; Riccardi et al., 1998). Activation of PCT CaSR dampens the phosphaturic actions of 410 

PTH and the responses to calcitriol (Egbuna et al., 2009). In vitro, 1α-hydroxylase is also 411 

shown to be downregulated in the presence of high calcium, suggesting a direct effect of 412 

calcium on calcitriol production (Bland et al., 1999). However, renal PCT CaSR expression is 413 

suppressed following acute PTH infusion and dietary phosphate loading (Riccardi et al., 2000) 414 

and upregulated by calcitriol (Canaff and Hendy, 2002), suggesting an independent, local 415 

negative feedback loop for phosphate regulation and calcium movement in this nephron 416 

segment. In the TAL, CaSR activation by hypercalcaemia disrupts the process of generating a 417 

lumen-positive transepithelial potential difference by inhibiting the activities of ROMK2 and 418 

sodium-potassium-chloride cotransporter (NKCC2) (Wang et al., 1996), which abrogates 419 

calcium paracellular transport and reduces the rate of calcium reabsorption (Vargas-Poussou 420 

et al., 2002). In the human DCT, CaSR and TRPV5 co-localise on the apical membrane and in 421 

intracellular vesicles (Topala et al., 2009); an increase in urinary calcium activates luminal 422 

CaSRs and enhances TRPV5 activity, resulting in an increase in apical entry of calcium 423 

(Topala et al., 2009). In vitro, PMCA1b activity, which mediates basolateral efflux of calcium 424 

in the DCT, is inhibited upon activation of the basolateral CaSR, limiting the transcellular 425 

reabsorption of calcium (Blankenship et al., 2001). Instead of regulating calcium reabsorption, 426 

the primary role of apical CaSR in the collecting duct is in the modification of urinary 427 

acidification and water reabsorption by promoting proton-transporting ATPase (H+-ATPase) 428 

activity and inhibiting aquaporin 2 expression, respectively (Sands et al., 1997; Bustamante et 429 
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al., 2008); it has been suggested that these mechanisms may have evolved to protect against 430 

nephrolithiasis (Riccardi et al., 1996; Renkema et al., 2009). 431 

 432 

CaSRs are expressed widely in the epithelial cells throughout the gastrointestinal tract 433 

in rats (Gama et al., 1997; Chattopadhyay et al., 1998; Cheng et al., 2002), humans (Gama et 434 

al., 1997; Rutten et al., 1999; Sheinin et al., 2000), rabbits (Butters et al., 1997) and chickens 435 

(Hui et al., 2021). In addition to its essential role in modulating calcium transport across the 436 

enterocytes (Chattopadhyay et al., 1998; Lee et al., 2019), the CaSR is fundamental in 437 

modulating normal gut physiology, including gastric acid secretion, neuronal responses, 438 

epithelial transportation, intestinal barrier function and immune responses (Oda et al., 2000; 439 

Geibel et al., 2001; Cheng et al., 2004; Dufner et al., 2005; MacLeod et al., 2007; Kelly et al., 440 

2011). Activation of gastric CaSRs stimulates acid production which promotes the dissolution 441 

of dietary calcium; this enhanced solubility of calcium in the acidic aqueous phase facilitates 442 

it intestinal absorption (Geibel et al., 2001). Furthermore, the increase in acid secretion 443 

promotes protein digestion and the release of L-amino acids that could act as CaSR agonists to 444 

synergistically activate the CaSR alongside calcium (Conigrave et al., 2002). By contrast, in 445 

an ex vivo study using small intestinal-like Caco-2 cells, activation of apical and basolateral 446 

CaSR increased local production of FGF23 by enterocytes, resulting in suppression of 447 

calcitriol-induced intestinal calcium transport, possibly preventing excess calcium absorption 448 

(Rodrat et al., 2018). Direct apical CaSR activation has been suggested to enhance colonic 449 

calcium absorption in caecectomised rats, potentially via the transcellular pathway involving 450 

TRPV6 and calbindin-D9k (Jongwattanapisan et al., 2012). In contrast, in a mouse study 451 

basolateral CaSR activation attenuates transcellular intestinal calcium transport by modulating 452 

TRPV6 function (Lee et al., 2019). Therefore, it is plausible that the opposing effects of CaSR 453 

on local calcium absorption may depend on the polarisation of CaSR; further investigations are 454 
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required to better elucidate the mechanism underlying the regulation of intestinal calcium 455 

absorption by CaSR.  456 

 457 

CaSRs are also expressed in osteoblasts and osteoclasts, where they sense calcium 458 

changes in local bone microenvironment and act as critical regulators for bone remodelling 459 

(Kameda et al., 1998; Kanatani et al., 1999; Yamaguchi et al., 2001). In vitro, stimulation of 460 

the CaSR in osteoblastic cells promotes chemotaxis, proliferation and differentiation of 461 

osteoblasts, augments bone matrix mineralisation and reciprocally reduces expression of 462 

RANKL and enhances expression of osteoprotegerin, to prevent osteoclastogenesis (Kanatani 463 

et al., 1999; Brennan et al., 2009; Takaoka et al., 2010). Additionally, exposure to high 464 

extracellular calcium at the resorptive site activates osteoclasts CaSR, resulting in the 465 

downregulation of osteoclast activity, inhibits formation of osteoclasts and reduces bone 466 

resorption (Datta et al., 1989; Moonga et al., 1990; Mentaverri et al., 2006). 467 

 468 

Conclusions 469 

Calcium homeostasis is a rigorous process that is dependent on four major organ 470 

systems (kidney, gastrointestinal tract, parathyroid gland and bone) with a complex interplay 471 

between various hormone regulators (PTH, calcitriol, FGF23, α-Klotho and calcitonin). 472 

Understanding the physiology of calcium homeostasis is a prerequisite for defining the 473 

pathophysiology of calcium and hormonal dysregulation in CKD-MBD.  474 
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Table 1. A summary of the effects of hormones and factors involved in calcium homeostasis. 1354 

Hormones/ 

factors 

Normal actions on kidney Normal actions on intestine Normal actions on bone Effects on other 

hormones/ factors 

Overall change 

seen with CKD 

References 

PTH ↑ calcium reabsorption (via 

upregulation of TRPV5 and 

calbindin-D28k and 

indirectly via ↑ calcitriol) 

↑ calcium absorption (indirectly 

via ↑ calcitriol) 

↑ bone formation and bone 

resorption; actions depend on the 

chronicity of exposure (continuous 

hyperparathyroidism inhibits 

osteoblast differentiation and leads 

to a fall in bone mass) 

↑ calcitriol ↑ McSheehy and Chambers, 1986; 

 Nemere and Norman, 1986;  

Parisien et al., 1990;  

Gesek and Friedman, 1992;  

Torres et al., 1995;  

Kifor et al., 1996;  

Zierold et al., 2003;  

Levin et al., 2007;  

Groot et al., 2009;  

Lavi-Moshayoff et al., 2010;  

Ben-awadh et al., 2014 

 

↑ calcitonin 

↑ FGF23 

↓ CaSR 

Calcitriol ↑ calcium reabsorption (via 

upregulation of TRPV5 and 

calbindin-D28k) 

↑ calcium absorption (via 

upregulation of TRPV6, 

calbindin-D9k, PMCA1b and 

NCX1; and increased expressions 

of Claudin-2, -12 and -15) 

↑ bone formation 

↑ / ↓ bone resorption depends on 

calcium and 

RANKL/osteoprotegerin ratio 

↓ PTH ↓ Hoenderop et al., 2001, 2002;  

Tsujikawa et al., 2003;  

Liu et al., 2006;  

Forster et al., 2011;  

Harada et al., 2012;  

Nakamichi et al., 2017 

↓ calcitonin 

↑ FGF23 

↑ α-Klotho 

↑ CaSR 
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FGF23 ↑ calcium reabsorption 

(together with α-Klotho via 

upregulation of TRPV5) 

↑ calcium absorption (via 

upregulation of TRPV6) 

↓ bone formation (via the regulation 

of bone mineralisation inhibitors 

e.g. Sfrp1, Dkk1 and osteopontin) 

↓ PTH ↑ Shimada et al., 2004b;  

Ben-Dov et al., 2007;  

Wang et al., 2008;  

Marsell et al., 2008;  

Shalhoub et al., 2011;  

Khuituan et al., 2012;  

Olauson et al., 2013;  

Andrukhova et al., 2014;  

Carrillo-López et al., 2016;  

Han et al., 2016;  

Murali et al., 2016a, 2016b 

 

↓ calcitriol 

↓ calcium absorption (indirectly 

via ↓ calcitriol and ↓ PTH) 

↓ α-Klotho 

α-Klotho ↑ calcium reabsorption (via 

upregulation of TRPV5, 

either independently or 

together with FGF23) 

↑ calcium absorption (via 

upregulation of TRPV6) 

↓ bone formation (discordant 

evidence on bone resorption) 

↓ PTH 

↓ calcitriol 

↓ Yoshida et al., 2002;  

Tsujikawa et al., 2003;  

Lu et al., 2008;  

Alexander et al., 2009;  

Shalhoub et al., 2011;  

Woudenberg-Vrenken et al., 2012; 

Komaba et al., 2017;  

Fan et al., 2018;  

↑ FGF23 

↓ calcium absorption (indirectly 

via ↓ calcitriol)  
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Xiao et al., 2019 

 

Calcitonina Discordant evidence on 

calcium reabsorption 

↑ calcium absorption (via ↑ 

calcitriol) 

↓ bone resorption ↑ calcitriol ↑ Clark and Kenny, 1969;  

Cochran et al., 1970;  

Nielsen et al., 1979;  

Carney and Thompson, 1981;  

Quamme, 1981;  

Kawashima et al., 1981;  

Chambers and Moore, 1983;  

Jaeger et al., 1986; 

Rodriguez et al., 1991;  

Monkawa et al., 1999;  

Kantham et al., 2009;  

Hsu et al., 2010 

 

↓ PTH 

CaSR ↓ calcium reabsorption (via 

decreased response to PTH 

and calcitriol) 

Apical activation ↑ calcium 

absorption 

↓ bone resorption ↓ PTH ↓ expression in 

parathyroid glands 

and arteries 

Datta et al., 1989;  

Moonga et al., 1990;  

Kanatani et al., 1999;  

Motoyama and Friedman, 2002;  
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Basolateral activation ↓ calcium 

absorption (via downregulation of 

TRPV6) 

 

↓ calcitriol Dufner et al., 2005;  

Molostvov et al., 2007;   

Jongwattanapisan et al., 2012;  

Lee et al., 2019;  

Uchiyama et al., 2020 

Modulation of gastrointestinal 

physiology (extend beyond 

calcium metabolism) 

↑ calcitonin 

Abbreviations: CKD, chronic kidney disease; CaSR, calcium-sensing receptor; FGF23, fibroblast growth factor 23; MAPK, mitogen-activated 1355 

protein kinase; PTH, parathyroid hormone; RANKL, receptor activator of nuclear factor kappa-B ligand; Sfrp1, secreted frizzled-related protein 1356 

1; Dkk1, Dickkopf-related protein 1, TRPV5, transient receptor potential vanilloid subtype 5; TRPV6, transient receptor potential vanilloid subtype 1357 

6; PMCA1b, plasma membrane calcium ATPase; and; NCX1, sodium-calcium exchanger. 1358 

a Calcitonin plays a relatively minor role in calcium homeostasis in adult cats (Pineda et al., 2013; van den Broek et al., 2018). 1359 
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Figure Legends 1360 

  1361 

Fig. 1. Schematic illustration of the major regulatory mechanisms of calcium homeostasis in 1362 

the body. Calcium is tightly regulated by the complex interplay of the four organs depicted 1363 

above: kidney, gastrointestinal tract, parathyroid gland and bone. Parathyroid hormone (PTH) 1364 

is synthesised and released from the parathyroid glands. PTH acts on the kidney to stimulate 1365 

calcium reabsorption and calcitriol synthesis. It also enhances the mobilisation of calcium and 1366 

stimulates fibroblast growth factor 23 (FGF23) production from the bone. FGF23, in turn, 1367 

inhibits the synthesis and secretion of PTH, forming a negative feedback loop. In the kidney, 1368 

FGF23 stimulates tubular calcium reabsorption and inhibits calcitriol production; calcitriol, on 1369 

the other hand, stimulates the production of FGF23, forming a second feedback loop. Calcitriol 1370 

also inhibits PTH synthesis, maintaining a third negative feedback loop. In addition to the 1371 

effects on calcium handling in the kidney and the bone, the three counterregulatory feedback 1372 

circuits work reciprocally to modulate the absorption of calcium by the gastrointestinal tract.  1373 

 1374 

Fig. 2. Schematic illustration of calcium reabsorption in the nephron. 1375 

(A) At the level of the proximal convoluted tubule (PCT): Calcium is reabsorbed 1376 

paracellularly via passive diffusion or solvent drag down an electrochemical gradient, and this 1377 

is partially driven by transcellular movement of sodium via sodium phosphate cotransporter 1378 

(NaPi-2a/-2c), sodium-hydrogen exchanger (NHE3), sodium-glucose cotransporter (SGLT1/2) 1379 

and various types of sodium-coupled amino acid cotransporters to allow entry of sodium across 1380 

the apical membrane. In turn, the sodium-potassium adenosine triphosphatase (Na+K+ATPase) 1381 

actively pumps sodium out of the cell at the basolateral membrane. Claudin-2 is the main tight 1382 

junction protein involving in calcium reabsorption in the PCT. Chloride is reabsorbed via both 1383 
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paracellular and transcellular pathways, which contributes to the development of an 1384 

electropositive transepithelial voltage at this level.  1385 

(B) At the level of the thick ascending limb (TAL): Calcium is reabsorbed via the paracellular 1386 

pathway involving Claudin-16 and -19, and Paracellin-1. The main driving force is associated 1387 

with the lumen-positive transepithelial electrical potential, generated by the transcellular 1388 

movement of sodium, chloride, and potassium. Sodium-potassium-chloride cotransporter 1389 

(NKCC2; the target site for the loop diuretic drugs, furosemide and torasemide) is responsible 1390 

for the apical entry of sodium, chloride and potassium; basolateral effluxes of sodium and 1391 

chloride are facilitated by Na+K+ATPase and the chloride channel, respectively. However, 1392 

potassium is mostly recycled apically via the renal outer medullary potassium channel 1393 

(ROMK2). 1394 

(C) At the level of the distal convoluted tubule (DCT): Calcium is reabsorbed via a 1395 

transcellular pathway in a three-step process: (1) calcium enters the cell at the apical surface 1396 

via transient receptor potential vanilloid subtypes 5 and 6 (TRPV5 and TRPV6); (2) calcium 1397 

binds to calbindin-D28k or -D9k for intracellular translocation; and (3) calcium exits at the 1398 

basolateral membrane through either the plasma membrane calcium ATPase (PMCA1b) or the 1399 

sodium-calcium exchanger (NCX1). 1400 

 1401 

Fig. 3. Schematic illustration of calcium absorption in the intestine. Calcitriol (1,25-1402 

dihydroxycholecalciferol) stimulates absorption of calcium via both transcellular and 1403 

paracellular pathways. The effects of calcitriol are mediated through binding to the vitamin-D 1404 

receptor (VDR). These initiate transcription of various genes to enhance the apical expression 1405 

of transient receptor potential vanilloid subtype 6 (TRPV6), induce synthesis of intracellular 1406 

calbindin-D9K, and increase the expression of plasma membrane calcium ATPase (PMCA1b) 1407 

and sodium-calcium exchanger (NCX1) on the basolateral membrane. Calcitriol also increases 1408 
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the expression of claudin-2, -12 and -15 to facilitate the paracellular calcium transport between 1409 

enterocytes. 1410 

 1411 

Fig. 4. Schematic illustration of the effects of FGF23-Klotho signalling on the promotion of 1412 

calcium reabsorption, achieved by the upregulation of the apical expression of transient 1413 

receptor potential vanilloid subtype 5 (TRPV5) in the renal distal convoluted tubules (DCT).  1414 

FGF23 binds to FGFR-Klotho complex to induce FGFR dimerization and initiates the MAPK 1415 

cascade involving the activation of extracellular signal-regulated kinases 1/2 (ERK1/2), 1416 

serine/glucocorticoid-regulated kinase-1 (SGK-1) and no lysine kinase 4 (WNK4). This 1417 

stimulates forward trafficking of TRPV5 and promotes tubular calcium reabsorption. 1418 



` 

 46 

Figure 1 1419 

1420 



` 

 47 

Figure 2 1421 

 1422 



` 

 48 

Figure 3 1423 

 1424 



` 

 49 

Figure 4 1425 

 1426 


