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Extended-spectrum beta-lactamase (ESBL)-producing bacteria present a unique

problem because of their ability to cause infections that are difficult to treat in

animals and humans. The presence of ESBL-Escherichia coli (E. coli) in poultry

raises a major public health concern due to the risk of zoonotic transfer via the

food chain and direct contact with birds and the environment. This review aimed

to determine the frequency of ESBL-producing E. coli and associated ESBL genes

in poultry in Africa. Three databases (PubMed, ScienceDirect, and Web of

Science) and predetermined websites were searched to identify scientific and

grey literature. Studies (1582) were screened at title, abstract, and full-text levels.

This review was registered with PROSPERO (CRD42021259872). Thirty-three

studies were deemed eligible for this review. Phenotypic ESBL expression was

confirmed in 22 studies (66.7%) with a wide range of colonization noted in

sampled poultry (1 – 100%). The blaCTX-Mgene was the most commonly isolated

with the variants blaCTX-M-1and blaCTX-M-15being the most predominant in North

and West Africa respectively. ESBL-producing E. coli isolates are frequently

detected in poultry in farms and slaughterhouses across Africa thereby posing

a potential health risk to humans. The paucity of data however does not allow for

inferences to be made about the true extent of ESBLs in poultry in Africa.

KEYWORDS

Escherichia coli, Enterobacteria, ESBLs, antimicrobial resistance, AMR, poultry,
systematic review, Africa
1 Introduction

Extended-spectrum b-lactamase (ESBL)-producing bacteria pose a serious risk to both

humans and animals (Mughini-Gras et al., 2019). The enzymes produced by these bacteria

confer resistance to beta-lactam antibiotics such as first, second and third generation

cephalosporins, penicillins, and monobactams, rendering them ineffective in treating

infections caused by Gram-negative bacteria (Laube et al., 2013). ESBL-producing

bacteria sometimes present resistance to antibiotics of other classes, further exacerbating

treatment failure and increasing morbidity and mortality in affected individuals and animal

populations alike (Rawat and Nair, 2010). The limited treatment options brought about by
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these resistant bacteria necessitates the use of ‘last resort’ antibiotics

such as colistin and carbapenems, thereby promoting resistance to

these drugs (Cantón et al., 2012).

ESBLs are most commonly produced by Enterobacteriaceae,

especially Escherichia coli (E. coli) and Klebsiella spp. which have

often been isolated in poultry (Blanc et al., 2006; Li et al., 2015).

Based on their amino acid sequence, ESBLs can be classified into

nine evolutionary and structural families: TEM, SHV, CTX-M,

VEB, GES, BES, PER, TLA, and OXA (Paterson and Bonomo,

2005), out of which TEM, CTX-M, SHV, and OXA are the major

groups often utilized for the molecular detection of ESBL genes

(Tängdén et al., 2010; Ur Rahman et al., 2018). CTX-M represents

the most widespread type of ESBLs isolated from humans and

poultry, but the predominant variants of this gene differ in both

populations (Platell et al., 2011; Gundran et al., 2019). CTX-M-14

and CTX-M-15 are the major variants observed in humans

regardless of geography. In poultry, CTX-M-1 is most commonly

isolated in Europe while CTX-M-14 is most common in Asia

(Ewers et al., 2012). However, there are dissenting opinions on

predominant variants of CTX-M in poultry in Africa (Alonso et al.,

2017; Meguenni et al., 2019).

The use of antibiotics, including beta-lactams, in animal

husbandry has been linked to an increased occurrence of resistant

bacteria in food-producing animals. The rise in consumer demand

for poultry products in low- and middle-income countries (LMICs),

including African countries, and a transition to large-scale intensive

production systems led to an increase in antibiotic use (ABU) in

food-producing animals (Klein et al., 2018). Worryingly, the

inadequate biosecurity and poor hygiene and sanitation in poultry

production systems in LMICs has resulted in a high reliance on

ABU for disease prevention and control (Hedman et al., 2020).

Higher incidence of drug-resistant bacteria including ESBL-

producing bacteria has been reported in poultry production

systems with high levels of ABU (ben Sallem et al., 2012; Donkor

et al., 2012).

Since the earliest detection of ESBLs in healthy poultry between

2000 and 2001 in Spain by Briñas et al. (2003), ESBL-producing

bacteria have been isolated in poultry in many countries including

African countries (Overdevest et al., 2011; Blaak et al., 2015;

Maamar et al., 2016; Brower et al., 2017; Aworh et al., 2020). The

detection of ESBL-producing E. coli in healthy poultry is a problem

due to the potential risk of zoonotic spread to human populations

via the food chain and the risk of causing severe illness and a burden

on healthcare services due to prolonged hospitalization periods in

affected individuals (Olsen et al., 2014; Ramos et al., 2020). The

detection of the same ESBL genes, such as blaCTX-M-15, and closely

related ESBL-producing E. coli isolate clusters in poultry and

humans further suggests the spread of these bacteria between

both poultry and human populations (Dierikx et al., 2013;

Falgenhauer et al., 2019).

The likelihood of interhost transfer of resistance between poultry

and humans appears to be relatively higher in some areas in Africa

where people often live in close contact with poultry (Alonso et al.,

2017). Moreover, ABU in many of these settings remains mostly

unregulated (Maron et al., 2013). Currently, major data gaps exist in

Africa with respect to the true burden of AMR; strengthening the
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evidence base is germane for the development of effective

interventions to tackle AMR in this continent (Elton et al., 2020).

The purpose of this study is to determine the frequency of ESBL-

producing E. coli and the most prevalent ESBL genes in poultry in

farms and slaughterhouses across the African continent. Additionally,

the study identified the predominant methods of ESBL testing and

the gaps in the knowledge of ESBLs in poultry in African countries.
2 Materials and methods

2.1 Search procedure

Three databases: Science Direct, PubMed, and Web of Science

were searched (from January 1, 2000, until May 24 2021) for studies

relevant to the review, using a combination of words from four

groups of search terms relating to “poultry”, “ESBL”, “antibiotic

resistance” and “Africa” (Supplementary Table S1). Predetermined

websites of national and international organizations (World Health

Organisation (WHO), Food and Agricultural Organization of the

United Nations (FAO), World Organisation for Animal Health

(WOAH, founded as OIE), International Livestock Research

Institute (ILRI), Africa Centre for Disease Control and Prevention

(CDC), World Bank, World Food Bank, and African Union) were

also searched to identify relevant grey literature. The study protocol

was submitted and registered with the PROSPERO International

Prospective Register of Systematic Reviews (study ID:

CRD42021259872) before the start of the literature search in

April 2021.
2.2 Inclusion criteria

This review included: (i) observational studies that assessed

ESBL-producing E. coli and in which ESBL genes were detected in

fecal samples, cloacal swabs, and cecal content from domestic

poultry (chickens and turkeys) at farm and slaughterhouse levels

and, (ii) studies that were carried out in African countries and

published in English language between 2000 and 2021. In studies

where different resistance patterns and/or genes were investigated,

only data related to ESBLs was extracted. In studies that sampled

domestic poultry of interest as well as other species, only data

related to poultry was extracted.
2.3 Exclusion criteria

This review excluded: (i) studies that considered bacteria species

other than E. coli, only pathogenic E. coli or non-ESBL producing E.

coli, (ii) studies that focused solely on humans, environment and/or

animal species other than poultry, (iii) studies that assessed ducks,

geese, and wild birds, (iv) studies where only poultry-derived

products, poultry meat, carcasses, or internal organs were

sampled, (v) reviews, abstracts from conference proceedings,

chapters from books or textbooks, and studies for which the full

text could not be obtained.
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2.4 Study screening

All studies identified using the search strategy were imported

into a reference management software (Mendeley version 1.19.4)

and the duplicates were removed. Screening of the studies against

the eligibility criteria was carried out in three steps at title, abstract,

and full text levels.
2.5 Citation and reference tracking

Citation and reference tracking of eligible publications was

conducted to identify previously unidentified studies relevant to

the systematic review. This was done simultaneously with

data extraction.
2.6 Study quality and risk of
bias assessment

The quality and risk of bias assessment was carried out using an

adapted version of the quality assessment tool described by Sargeant

et al. (2005). A checklist was used to appraise each study based on

study objectives and population, outcome assessment, data analysis,

results, and conclusions (Supplementary Table S2). Every study was

appraised by assigning a score for each item on the checklist and

adding up the total scores. The cumulative scores for each study

were then interpreted using a rating scale of 0-16. Studies with

scores between 0-5 were grouped as low quality, those with scores

between 6-11 were termed intermediate quality while high-quality

studies were defined as those with a score of 12-16.
2.7 Data extraction

An Excel data extraction template was created (Microsoft Excel,

version 16.0). The column headings were defined in line with the

research questions and eligibility criteria. The data extracted

included general details about the publication (author, publication

date and period of study, country), study objectives or research

questions, study characteristics (study design, sampling strategy,

and sampling size), the population (species, type of production

system, age, health status), exposure (number of E. coli isolates) and

outcome of interest (methods of ESBL detection, ESBL frequency,

and percentage, ESBL genes). In this study, ESBL percentage refers

to the number of ESBL-producing E. coli out of the total number of

E. coli isolates tested.

The different types of production systems (i.e., intensive, semi-

intensive, extensive, small scale, household/backyard) were collated

by the authors when these were reported in the studies. In studies

where only the farm population has been stated, farms with less

than 200 birds were classified as small scale, while those with 200 –

1,000 birds were classified as medium scale and farms with over

1,000 birds were classified as large-scale production systems
Frontiers in Antibiotics 03
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(FAO, 2014).
2.8 Data analysis and synthesis

Due to the heterogeneity of the data, a meta-analysis could not

be carried out in this review. Instead, a narrative analysis of the

study characteristics was conducted with the use of tables and

figures. Studies were grouped into three geographical regions:

Northern, Western and Eastern Africa according to the United

Nations geoscheme (UN, 2011).
3 Results

Overall, 1,441 studies were identified through scientific

databases; 113 were identified from grey literature websites, and

an additional 28 were identified through citation and reference

tracking. After a three-tier screening at title, abstract and full text

levels, a total of 33 studies were deemed eligible for inclusion in this

review (Figure 1).
3.1 Quality of studies

Since most of the studies (27 studies, 81.8%) included in this

review employed non-probabilistic sampling, failed to justify

sample size, and did not address confounding, they were

considered to be of moderate quality with moderate risk of bias.

Only six studies were categorized as high quality with low risk of

bias because they provided adequate description of the phenotypic

and genotypic methods employed in the study, utilized appropriate

statistical analysis, and the conclusions were logical and consistent

with the findings of the study (Table 1).
3.2 Study characteristics

3.2.1 Location and timeline
The studies span nine countries from North, West, and East

Africa. Seventeen (51.5%) of the studies were carried out in North

Africa (Algeria = 4, Egypt = 2, Tunisia = 11), six in East Africa

(Kenya = 1, Tanzania = 4, Uganda = 1) and 10 in West Africa

(Ghana = 1, Nigeria = 8, Senegal = 1) (Figure 2). All studies were

scientific articles published between 2007 and 2021 with most of the

studies (26 studies, 78.8%) published between 2016 and 2021. There

was a decline in the number of publications from 2020

onwards (Figure 3).

3.2.2 Study design and sampling strategy
All studies were cross-sectional studies. In one study

(Falgenhauer et al., 2019), a repeat cross-sectional study design

was employed, and results were reported as an overall proportion.

With respect to sampling strategy, only two studies (Okpara et al.,
frontiersin.org
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2018; Vounba et al., 2019) employed probabilistic sampling, five

used non-probabilistic sampling [purposive = 1 (Mgaya et al.,

2021), convenience sampling = 4 (Chabou et al., 2018; Aworh

et al., 2020; Hassen et al., 2020; Kimera et al., 2021)]; nevertheless,

the majority of the studies (26 studies, 78.8%) did not provide any

details of the sampling strategy used (Table 2).

3.2.3 Study setting and production systems
The majority of the studies were carried out at farm level (29

studies, 87.9%), three (Fortini et al., 2011; Chah et al., 2018; Mgaya

et al., 2021) were carried out at slaughterhouse level while one of the

studies (Chabou et al., 2018) was conducted at both farm and

slaughterhouse levels. At farm level, only seven studies (24.1%)

provided details of ABU on the farm for disease prevention and/or

treatment (Saidani et al., 2019; Vounba et al., 2019; Hassen et al.,

2020), growth promotion (Ayandiran et al., 2018) or both purposes

(Okpara et al., 2018; Okubo et al., 2019) (Table 2), whilst one study

(Ojo et al., 2016) did not report the reason for ABU. The antibiotics

used include one or more fluoroquinolones (enrofloxacin,

ofloxacin, norfloxacin ciprofloxacin, flumequine); tetracyclines

(oxytetracycline, doxycycline, tetracycline); macrolides

(erythromycin); penicillins (benzylpenicillin, amoxicillin,

amoxicillin/clavulanic acid, ampicillin); aminoglycosides

( g e n t am i c i n , s t r e p t omy c i n , n eomyc i n ) ; ph en i c o l s
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(chloramphenicol , florfenicol) ; polymyxins (col ist in) ;

sulfonamides (trimethoprim/sulphamethoxazole, sulphonamide);

nitrofurans (furazolidone). Tetracyclines were the most frequently

reported antimicrobial agents, in six out of the seven

studies (Table 3).

Nineteen (57.6%) of the eligible studies provided details of the

type of production systems. Seven (22.6%) studies were conducted

on large-scale farms, three were in small and medium scale farms,

and two in backyard farms. In one study, birds were sampled from

small and medium- sized commercial farms and backyard farms.

ESBL-E. coli levels were generally higher in large-scale farms

(23.8% - 93.8%) than in small and medium-scale farms (0% -

35.3%). All three studies conducted in backyard production systems

(Ojo et al., 2016; Okpara et al., 2018; Langata et al., 2019) reported

low ESBL levels ranging from 0 to 2.9%. Two studies (ben Sallem

et al., 2012; Mgaya et al., 2021) assessed ESBL-E. coli in both

intensive and extensive systems while one study (Saidani et al.,

2019) was carried out on a farm with an intensive production

system. However, not all reported ESBL proportions to allow for

comparisons (Table 2).

3.2.4 Study population
Most of the studies sampled chickens (26 studies, 78.8%). Out of

these, eight (30.8%) assessed ESBLs in broilers, two (7.7%) in layers,
FIGURE 1

PRISMA flow chart of the study screening process conducted for this review (adapted from Page et al. (2021).
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and three (11.5%) in both broilers and layers. One study (3.8%)

sampled both chickens and turkeys (Okpara et al., 2018). The age of

the birds sampled was reported in only five studies (15.2%) (Kilani

et al., 2015; Agabou et al., 2016; Messaili et al., 2019; Saidani et al.,

2019; Hassen et al., 2020), and it ranged from four to 58 weeks.

Sixteen (48%) of the studies were carried out in healthy birds, one

study (Grami et al., 2013) was carried out in diseased birds and the

remaining 16 studies did not report the health status of sampled

birds. The studies assessed for the presence of ESBLs in fecal

samples (25 studies, 75.8%), cloacal swabs (7 studies) and cecal

content (1 study) (Table 2).

Twenty-eight studies (84.8%) employed both phenotypic and

genotypic methods to assess ESBLs, three studies (9.1%) employed

only genotypic methods, and two studies (6.1%) employed only

phenotypic methods to assess for the presence of ESBLs.

ESBL-producing E. coli were detected both at farm and

slaughterhouse level in all countries apart from Uganda. The gene

families isolated by the studies included in this review were blaTEM,

blaCTX-M, blaOXA, and blaSHV. Resistance among ESBL-E. coli was

reported in 24 studies (72.7%). Out of these, 12 (50%) reported the

presence of Multidrug-Resistant (MDR) isolates (that presented

resistance to at least three antibiotic classes) (Magiorakos

et al., 2012).
3.3 Frequency of ESBL-producing E. coli
and diversity of ESBL genes by region

3.3.1 North Africa
Seventeen studies from North Africa assessed ESBLs in E. coli.

The studies were conducted in three countries namely Algeria,

Egypt, and Tunisia, and most of the studies (11 studies, 64.7%) were

carried out in Tunisia. All studies obtained samples at farm level.

One study (Chabou et al., 2018) obtained samples from farms and

slaughterhouses. The majority (12 studies, 70.6%) were published

after 2015. Sixteen studies (94.1%) employed phenotypic methods

to assess for ESBLs. Out of these, 12 studies (75%) reported ESBL

production. In three studies (Jouini et al., 2007; Agabou et al., 2016;

Badi et al., 2018), no ESBL-producing E. coli were isolated. In one

study, the phenotypic count was not reported. The highest

proportion of ESBL-E. coli (98%) in this region was reported in

chickens raised intensively in Tunisia (Saidani et al. ,

2019) (Table 4).

All 17 studies from North Africa used genotypic methods. Out

of these, 14 (82.4%) detected ESBL genes. The ESBL genes detected

in this region belonged to the CTX-M, TEM, SHV, and OXA

families (Figure 4). CTX-M-1 was the most frequently isolated gene

in this region, being detected in 11 studies (64.7%) followed by

CTX-M-15 (5 studies, 29.4%), TEM-1 (4 studies, 23.5%) CTX-M-55

(2 studies, 11.8%), and SHV-12 (2 studies, 11.8%). Coexpression of

genes was reported in seven studies (41.2%) in this region (Table 4).

Only two studies (11.8%) from Tunisia (Saidani et al., 2019;

Hassen et al., 2020) reported use of polymyxins, tetracyclines,

quinolones, penicillins, and phenicols in poultry. ESBL-producing

E. coli in this region presented resistance to one or more antibiotics

across eight classes (Aminoglycosides, cephalosporins,
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fluoroquinolones, monobactams, penicillins, polymyxins,

sulphonamides, and tetracyclines). Fluoroquinolones represent

the antibiotic class for which resistance was most often reported

(Table 4; Figure 5). Five studies (Mnif et al., 2012; Moawad et al.,

2018; Messaili et al., 2019; Hassen et al., 2020; Kilani et al., 2020)

reported the presence of MDR ESBL E. coli isolates.

3.3.2 West Africa
Ten studies were conducted in Ghana, Nigeria, and Senegal.

Most of the studies (8 studies, 80%) were from Nigeria. Eight studies

sampled poultry at farm level while two studies (20%) from Nigeria

(Fortini et al., 2011; Chah et al., 2018) were conducted at

slaughterhouse level. Eight of nine studies that used phenotypic

methods reported ESBL production. In one study, the phenotypic

count was not reported. The highest proportion of ESBL-producing

E. coli (90%) in this region was reported in Nigeria in a study that

sampled broilers at slaughterhouse level (Chah et al. ,

2018) (Table 4).

Eight studies employed genotypic methods to assess ESBL-E.

coli; ESBL genes were detected in all studies. Only genes from the
Frontiers in Antibiotics 07
TEM, CTX-M, and SHV families were isolated (Figure 4). CTX-M-

15 was the most isolated gene, being detected in seven (70%) of the

studies followed by TEM-1 (2 studies, 20%). Coexpression of genes

has also been reported in three studies (30%) in this

region (Table 4).

Four studies (40%) reported ABU (Ojo et al., 2016; Ayandiran

et al., 2018; Okpara et al., 2018; Vounba et al., 2019); the most

commonly used antimicrobials belonged to the tetracyclines,

fluoroquinolones, macrolides, penicillins, aminoglycosides,

phenicols, polymyxins, sulfonamides and nitrofurans classes.

Most of the studies reported resistance of ESBLs to one or more

tetracyclines, fluoroquinolones, and aminoglycosides. Four studies

(Chah et al., 2018; Okpara et al., 2018; Vounba et al., 2019; Aworh

et al., 2020) reported the presence of MDR ESBL E. coli isolates

(Table 4; Figure 5).

3.3.3 East Africa
Six studies from Kenya, Tanzania, and Uganda were identified.

Tanzania contributed the highest number of studies (4 studies,

66.7%). Five studies (83.3%) were conducted at farm level; only one

study (16.7%) (Mgaya et al., 2021) was conducted at slaughterhouse

level. Five studies assessed ESBLs using phenotypic methods; ESBL

production was reported in two studies (33.3%) (Katakweba et al.,

2018; Mgaya et al., 2021) at 100% level. Both studies sampled

chickens in Tanzania; one in a slaughterhouse (Chabou et al., 2018)

and the other in a commercial farm (Büdel et al., 2020). In two

studies, the phenotypic counts were not reported. One study

(Okubo et al., 2019) reported 0% ESBLs at farm level. This was

the only study carried out in Uganda (Table 4).

Only genes from the family CTX-M and TEM were reported in

this region (Figure 4). Gene variants reported include CTX-M-9

and CTX-M-15; both were detected in one study (Büdel et al.,

2020) (Table 4).

Only one study, which sampled chickens in subsistence and

commercial farms, reported the use of antibiotics which included

aminoglycosides, fluoroquinolones, macrolides, penicillins,

penicillin-streptomycin combination, sulfonamides, sulfonamide-

trimethoprim combination and tetracyclines (Okubo et al., 2019)

but no ESBL-E. coli isolates were detected in this study. Four studies

however reported ESBL-E. coli resistance to tetracyclines,

sulphonamides, fluoroquinolones, penicillins, and cephalosporins.

Three studies reported presence of MDR ESBL E. coli isolates

(Table 4; Figure 5).
3.4 ESBL detection methods

Most studies 28 studies, 84.8%) employed a combination of

both phenotypic and genotypic tests. Two studies (6.1%) conducted

in Nigeria (Ayeni et al., 2015; Kwoji et al., 2019) used only

phenotypic methods. Three studies (9.1%) (Fortini et al., 2011;

Chabou et al., 2018; Langata et al., 2019) used only genotypic

methods (Table 5).

E. coli isolates were assessed for susceptibility to over 40

antibiotics, including 3rd generation cephalosporins, across all
FIGURE 2

Map of study locations.
FIGURE 3

Timeline of study publications.
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TABLE 2 Characteristics of eligible studies.

le Samples
collected

Antibiotic
Use/Purpose

Resistance Detec-
tion method

80 Fecal sample NR Both*

1¶ Fecal sample NR Both*

20 Fecal sample Reported/GP Both*

45 Fecal sample NR Phenotypic only

20 Fecal sample NR Both*

61 Cecal content NR Both*

14 Fecal sample NR Both*

8 Fecal sample NR Both*

62 Fecal sample NR Both*

¶ Fecal sample NR Genotypic only

Fecal sample NR Genotypic only

10 Fecal sample NR Both*

40 Fecal sample NR Both*

00 Fecal sample NR Genotypic only

93 Fecal sample NR Both*

86 Fecal sample Reported/DPT Both*

6 Fecal sample NR Both*

97 Fecal sample NR Both*
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Publication
Details
(Study period)

Location Study design/
Sampling strategy Setting Production

system Population Age Health
Status

Samp
size

Agabou et al., 2016
(2011-2012)

Algeria Cross-sectional/NR Farm NR Chicken
≥ 35 days
(5 weeks)

NR

Aworh et al., 2020
(2018-2019)

Nigeria
Cross-sectional/
Convenience sampling

Farm NR Chicken NR NR 1

Ayandiran et al., 2018
(2016)

Nigeria Cross-sectional/NR Farm Medium scale Poultry NR NR

Ayeni et al., 2015
(2014)

Nigeria Cross-sectional/NR Farm NR Poultry NR NR

Badi et al., 2018
(2012)

Tunisia Cross-sectional/NR Farm NR Poultry NR Healthy

Belmahdi et al., 2016
(2014)

Algeria Cross-sectional/NR Farm NR Broiler NR Healthy

ben Sallem et al.,
2012 (2011)

Tunisia Cross-sectional/NR Farm Intensive Chicken NR NR

Extensive Chicken NR NR

Büdel et al., 2020
(2018)

Tanzania Cross-sectional/NR Farm NR Poultry NR Healthy

Chabou et al., 2018
(2014)

Algeria
Cross-sectional/
Convenience sampling

Farm Large scale Broiler NR Healthy 50

Slaughterhouse N/A Broiler NR Healthy

Chah et al., 2018
(2014-2015)

Nigeria Cross-sectional/NR Slaughterhouse N/A Broiler NR NR

Falgenhauer et al.,
2019 (2015)

Ghana Repeat cross-sectional Farm Large scale Broiler NR NR

Fortini et al., 2011
-2006

Nigeria Cross-sectional/NR Slaughterhouse N/A Chicken NR Healthy

Grami et al., 2013
(2011-2012)

Tunisia Cross-sectional/NR Farm Large scale Chicken NR Diseased

Hassen et al., 2020
(2018)

Tunisia
Cross-sectional/
Convenience sampling

Farm Large scale Broiler
35 days (5
weeks)

Healthy

Jouini et al., 2007
(NR)

Tunisia Cross-sectional/NR Farm NR Chicken NR NR

Katakweba et al., 2018
(2011-2013)

Tanzania Cross-sectional/NR Farm Intensive Chicken NR NR
2

1

3

4

1

1

1

2
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TABLE 2 Continued

ple
e

Samples
collected

Antibiotic
Use/Purpose

Resistance Detec-
tion method

97 Fecal sample NR Both*

45 Fecal sample NR Both*

20 Fecal sample NR Both*

61 Fecal sample NR Both*

390 Cloacal swab NR Both*

24 Cloacal swab NR Phenotypic only

24 Cloacal swab NR Phenotypic only

24 Cloacal swab NR Phenotypic only

24 Cloacal swab NR Phenotypic only

150 Fecal sample NR Genotypic only

137 Fecal sample NR Both*

100 Fecal sample NR Both*

96 Cloacal swab NR Both*

96 Cloacal swab NR Both*

136 Fecal sample NR Both*

576 Cloacal swab NR Both*

143 Fecal sample Reported/NR Both*

97 Fecal sample Reported/NR Both*

101¶ Cloacal swab
Reported/DPT &
GP

Both*

Cloacal swab
Reported/DPT &
GP

Both*

(Continued)
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Publication
Details
(Study period)

Location Study design/
Sampling strategy Setting Production

system Population Age Health
Status

Sam
siz

Extensive Chicken NR NR

Kilani et al., 2015
(2013)

Tunisia Cross-sectional/NR Farm NR Chicken
58 weeks Healthy

7 weeks Healthy

Kilani et al., 2020
(2009-2012)

Tunisia Cross-sectional/NR Farm NR Poultry NR Healthy

Kimera et al., 2021
(NR)

Tanzania
Cross-sectional/
Convenience sampling

Farm Small scale Poultry NR NR

Kwoji et al., 2019
(NR)

Nigeria Cross-sectional/NR Farm Small scale

Broiler NR NR

Layer NR NR

Chick broiler NR NR

Pullet NR NR

Langata et al., 2019
(2017)

Kenya Cross-sectional/NR Farm Backyard
Broiler and
layer

NR NR

Maamar et al., 2016
(2013)

Tunisia Cross-sectional/NR Farm Large scale Layer NR Healthy

Messaili et al., 2019
(NR)

Algeria Cross-sectional/NR Farm NR Broiler
45-47 days
(6 weeks)

Healthy

Mgaya et al., 2021
(2020)

Tanzania
Cross-sectional/
Purposive sampling

Slaughterhouse N/A
Broiler NR NR

Layer NR NR

Mnif et al., 2012
(2010)

Tunisia Cross-sectional/NR Farm Large scale Chicken NR Healthy

Moawad et al., 2018
(2016)

Egypt Cross-sectional/NR Farm Large scale Broiler NR Healthy

Ojo et al., 2016
(2014)

Nigeria Cross-sectional/NR Farm

Small/medium
sized farm

Chicken NR NR

Backyard Chicken NR NR

Okpara et al., 2018
(NR)

Backyard/
extensive

Chicken NR NR

Backyard/semi-
intensive

Chicken NR NR
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TABLE 2 Continued

Population Age Health
Status

Sample
size

Samples
collected

Antibiotic
Use/Purpose

Resistance Detec-
tion method

Chicken NR NR Cloacal swab
Reported/DPT &
GP

Both*

Turkey NR NR 7 Cloacal swab
Reported/DPT &
GP

Both*

-
Turkey NR NR 2 Cloacal swab

Reported/DPT &
GP

Both*

Layer NR NR 39 Fecal sample
Reported/DPT &
GP

Both*

Broiler NR Healthy 40 Cloacal swab NR Both*

Chicken
>30 days (4
weeks)

Healthy 258 Cloacal swab Reported/DPT Both*

Poultry NR Healthy 60 Fecal sample NR Both*

Chicken NR Healthy 50 Fecal sample Reported/DPT Both*
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Publication
Details
(Study period)

Location Study design/
Sampling strategy Setting Productio

system

Nigeria
Cross-sectional/Random
sampling

Farm

Backyard/
intensive

Backyard/
extensive

Backyard/sem
intensive

Okubo et al., 2019
(2016-2017)

Uganda Cross-sectional/NR Farm NR

Ramadan et al., 2018
(2015)

Egypt Cross-sectional/NR Farm NR

Saidani et al., 2019
(2016)

Tunisia Cross-sectional/NR Farm Intensive

Sghaier et al., 2019
(2013-2015)

Tunisia Cross-sectional/NR Farm NR

Vounba et al., 2019
(2011)

Senegal
Cross-sectional/Random
Sampling.

Farm NR

NR- Not Reported.
N/A- Not applicable.
GP – Growth promotion.
DPT – Disease prevention and/or treatment.
Both* - Both genotypic and phenotypic resistance detection has been carried out.
¶ - Number of samples per setting has not been specified.
n

i
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studies. The majority of the studies (24 studies, 72.7%) used the disk

diffusion test, whilst four studies used broth microdilution, and one

study used a combination of disk diffusion, broth microdilution,

and broth macrodilution tests (Ojo et al., 2016). In one study

(Falgenhauer et al., 2019), the details of the antimicrobial

susceptibility testing (AST) were not provided. Phenotypic

confirmatory tests were carried out across studies using the

double-disk synergy test (DDST) (17 studies), the combination

disc test (6 studies), BioMérieux Inc’s VITEK test (an automated

bacterial identification and susceptibility testing system) (3 studies),

and broth microdilution (1 study). In three studies (Okubo et al.,

2019; Aworh et al., 2020; Büdel et al., 2020), phenotypic

confirmatory tests were not reported. Instead, these studies

employed genotypic confirmatory methods (Table 5).

Genotypic detection of ESBL genes (blaTEM, blaCTX-M, blaOXA,

and blaSHV) was carried out using Polymerase Chain Reaction

(PCR) and sequencing in most of the studies (29 studies, 93.5%).

Microarray analysis has been employed in only two studies

(Moawad et al., 2018; Büdel et al., 2020). Fifteen studies (45.5%)

screened for three gene families, nine studies screened for four gene

families, five screened for only the CTX-M gene family and two

studies (Ayandiran et al., 2018; Falgenhauer et al., 2019) did not

specify the panel of genes screened.
3.5 Guidelines adopted for AST by
the studies

All studies reported the guidelines followed when carrying out

AST. Most of the studies (21 studies, 70%) followed the guidelines

from the Clinical and Laboratory Standards Institute (CLSI). Three

studies (Agabou et al., 2016; Falgenhauer et al., 2019; Büdel et al.,

2020) followed guidelines from European Committee on

Antimicrobial Susceptibility Testing (EUCAST), four studies

(Grami et al., 2013; Belmahdi et al., 2016; Messaili et al., 2019;

Saidani et al., 2019) followed guidelines from Antibiogram

Committee of the French Society for Microbiology (CA-SFM),

one study (Moawad et al., 2018) adopted guidelines from the

German Institute for Standardization while one (Okubo et al.,

2019) adopted the joint CLSI/EUCAST guidelines (Table 5).
4 Discussion

This review aimed to determine the frequency of ESBL-

producing E. coli in poultry in Africa at farm and slaughterhouse

levels. Due to the heterogeneity of studies, arising from various

methods of assessing and reporting phenotypic and genotypic

proportions of ESBLs, a meta-analysis could not be carried out to

estimate overall levels of ESBL-E. coli in Africa. This review

identified 33 studies that assessed ESBL-producing E. coli isolates

in poultry at farm and slaughterhouse levels across Algeria, Egypt,

Ghana, Kenya, Nigeria, Senegal, Tanzania, Tunisia, Uganda.

Twenty-nine (87.9%) of the eligible studies confirmed ESBL

production through phenotypic detection, genotypic detection, or

both. ESBL genes from four families namely: TEM, CTX-M, SHV,
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TABLE 4 ESBL proportions, gene diversity, and resistance patterns by region.

S/N Publication
Details

Location Phenotypic
ESBL count
(proportion

%)

Genotypic
ESBL count
(Proportion

%)

ESBL Genes
detected
(count)

Phenotypic Antibiotic Resistance patterns

NORTH AFRICA

1. Agabou et al.,
2016

Algeria 0/70
(0 %)

0/36
(0 %)

None. N/A

2. Belmahdi et al.,
2016

Algeria 16/20 (80%) 20/20 (100%) CTX-M-1 (2) *
TEM-1 (20) *
SHV-12 (14) *

Fluoroquinolones, Aminoglycosides, Penicillins,
Monobactams, cephalosporins

3. Chabou et al.,
2018

Algeria N/A NR CTX-M (46)
TEM (128)
SHV (83)
OXA-58 (132)

NR

4. Messaili et al.,
2019

Algeria 1/100 (1%) 1/100 (1%) CTX-M-1 (1) Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Penicillins, cephalosporins ¶

5. Moawad et al.,
2018

Egypt 15/63 (23.8%) 15/63 (23.8%) CTX-M-15 (1) *
TEM (13) *
SHV (1) *
OXA-1 (1); OXA-7
(2)
*

Sulphonamides, Fluoroquinolones, Aminoglycosides,
Penicillins, Monobactams, Polymyxins, cephalosporins
¶

6. Ramadan et al.,
2018

Egypt NR 2 TEM (2) NR

7. Badi et al.,
2018

Tunisia 0/13
(0%)

0 None N/A

8. Ben Sallem
et al., 2012

Tunisia 8/10 (80%) 8/10 (80%) CTX-M-1 (8) *
TEM-1B (1) *
TEM-135 (1) *

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides

9. Grami et al.,
2013

Tunisia 8 8 CTX-M-1 (7); CTX-
M-
9 (1)

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides

10. Hassen et al.,
2020

Tunisia 60/64 (93.8%) 60/60 (100%) CTX-M-1 (41); CTX-
M-14 (1);
CTX-M-55 (18) *

Tetracyclines, Sulphonamides, Fluoroquinolones, Phenicols
¶

TEM-1B (55) *

11. Jouini et al.,
2007

Tunisia 0 0 None N/A

12. Kilani et al.,
2015a

Tunisia 11 11 CTX-M-1 (11) *
TEM-1 (1) *

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides

Kilani et al.,
2015b

6 5 CTX-M-1 (5)

13. Kilani et al.,
2020

Tunisia 1 1 CTX-M-1 (1) Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Penicillins ¶

14.. Maamar et al.,
2016

Tunisia 35/48 (72.9%) 35/48 (72.9%) CTX-M-1 (29); CTX-
M-14 (1);
CTX-M-15 (5) *
TEM-1 (8) *

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Phenicols

15. Mnif et al.,
2012

Tunisia 43/67 (64.2%) 43/67 (64.2%) CTX-M-1 (39); CTX-
M-15 (4) *
TEM-1 (26) *

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides ¶

(Continued)
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TABLE 4 Continued

S/N Publication
Details

Location Phenotypic
ESBL count
(proportion

%)

Genotypic
ESBL count
(Proportion

%)

ESBL Genes
detected
(count)

Phenotypic Antibiotic Resistance patterns

16. Saidani et al.,
2019

Tunisia 49/50 (98%) 49/50 (98%) CTX-M-1 (35); CTX-
M-15 (3);
CTX-M-55 (6)
SHV-12 (6)

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Phenicols, Polymyxins.

17. Sghaier et al.,
2019

Tunisia 31 31/31
(100%)

CTX-M-1 (29); CTX-
M-15 (2)

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides

WEST AFRICA

1. Falgenhauer
et al., 2019

Ghana 45 45 CTX-M-15 (43);
CTX-
M-15 (3)
SHV-12 (2)

NR

2. Ayeni et al.,
2015

Nigeria 1/20
(5%)

N/A N/A Penicillins, cephalosporins

3. Aworh et al.,
2020

Nigeria 14/22 (63.6%) 2/22 (9.1%) CTX-M-15 (1); CTX-
M-65 (1)

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Phenicols, Penicillins, Macrolides,
cephalosporins ¶

4. Ayandiran
et al., 2018

Nigeria 3/52 (5.8%) 3/3 (100%) CTX-M-15 (3) *
TEM (3) *

Tetracyclines, Fluoroquinolones, Aminoglycosides

5. Chah et al.,
2018

Nigeria 9/10 (90%) 9/9 (100%) CTX-M-1 (3); CTX-
M-
15 (5) *
TEM-1 (1) *

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Phenicols, Penicillins,
cephalosporins ¶

6. Fortini et al.,
2011

Nigeria N/A 15/96
(15.6%)

CTX-M-15 (1) *
TEM-1 (15) *

N/A

7. Kwoji et al.,
2019c

Nigeria 6/17
(35.3%)

N/A N/A Monobactams, cephalosporins

Kwoji et al.,
2019d

5/13
(38.5%)

N/A N/A

Kwoji et al.,
2019e

6/20
(30%)

N/A N/A

Kwoji et al.,
2019f

4/15
(26.7%)

N/A N/A

8. Ojo et al.,
2016g

Nigeria 4/143
(2.8%)

4/143
(2.8%)

CTX-M-15 (4) Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Phenicols, Carbapenems, cephalosporins

Ojo et al.,
2016h

0/97
(0%)

0 None

9. Okpara et al.,
2018i

Nigeria 3/101 (2.9%) 3/101 (2.9%) CTX-M-1 (1); CTX-
M-
15 (1);
CTX-M-27 (1)

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Phenicols ¶

Okpara et al.,
2018j

1/9
(11.1%)

1/9
(11.1%)

CTX-M-15 (1)

10. Vounba et al.,
2019

Senegal NR 19 CTX-M (2)
TEM (17)

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides ¶

EAST AFRICA

1. Langata et al.,
2019

Kenya N/A 11 TEM (11) N/A

(Continued)
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and OXA were detected in poultry in the eligible studies included in

this review. CTX-M genes were the most frequently isolated.

The levels of ESBLs in poultry varied greatly across studies,

ranging from 0% in Algeria, Tunisia, and Uganda to 100% in

Tanzania. This can probably be explained by variations in resistance

detection methods, types of samples obtained, sampling periods,

geographical locations, types of production systems and animal

husbandry practices. Most of the findings were based on

convenience or unspecified sampling strategies, making it difficult

to arrive at generalized conclusions on the levels of ESBLs in poultry

populations in these countries. In one study carried out in backyard

farms in Nigeria, a prevalence of ESBL-E. coli at 2.97% was

estimated (Okpara et al., 2018). Nonetheless, it would be

impractical to make a justifiable inference based on only one

study. Notably, this level is significantly lower than the levels of

ESBL-E. coli in poultry reported in studies from Europe and Asia

which range from 13.7% to 100% (Dierikx et al., 2012; Huijbers

et al., 2014; Blaak et al., 2015; Umair et al., 2019). It is also lower

than the ESBL levels of E. coli reported in other food-producing

animals (Olowe et al., 2015; Braun et al., 2016) and human

populations (Kiiru et al., 2012; Tufa et al., 2020) in Africa.

Most studies identified in this review were conducted in the

North Africa region; overall, Tunisia was the country with the

highest number of studies. This review also identified Nigeria and

Tanzania as the countries with the highest number of studies in

West and East Africa respectively. The frequent reporting of ESBLs
Frontiers in Antibiotics 14
in these countries does not necessarily equate to a high burden.

Rather, it can be argued that resistance due to ESBL has been

recognized as an urgent public health problem in these countries

(Musa et al., 2020) hence, the increase in the number

of publications.

CTX-M genes were most frequently isolated in eligible studies

with CTX-M-1 and CTX-M-15 variants being the most isolated in

North and West Africa respectively. This frequency of detection of

CTX-M is in agreement with the findings of studies conducted in

poultry populations in Europe and Asia (Ewers et al., 2012;

Gundran et al., 2019). The TEM, SHV, and OXA genes have also

been detected but the OXA gene was the least isolated, being

detected only in North Africa. This is probably because OXA is

mostly isolated in Pseudomonas aeruginosa (Poirel et al., 2010;

Potron et al., 2015) and this review focused on ESBLs in E. coli. A

study reported a high prevalence of MDR P. aeruginosa in humans

in countries in the North Africa region (Al-Orphaly et al., 2021).

The detection of blaOXA in E. coli isolates from poultry in this region

is not unexpected as horizontal gene transfer of ESBLs between

different bacteria species is well documented (Bajpai et al., 2017;

Horcajada et al., 2019). Nonetheless, only one-third of the studies

included in this review screened for the OXA gene so

underreporting of this gene cannot be ruled out. OXA-58 was

detected in a study conducted in large scale intensive farms and

slaughterhouses in Algeria (Chabou et al., 2018) and this gene has

been linked to the expression of phenotypic resistance to
TABLE 4 Continued

S/N Publication
Details

Location Phenotypic
ESBL count
(proportion

%)

Genotypic
ESBL count
(Proportion

%)

ESBL Genes
detected
(count)

Phenotypic Antibiotic Resistance patterns

2. Büdel et al.,
2020

Tanzania NR NR CTX-M-9 ; CTX-M-
15

Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Penicillins, Glycylclines, polymymins,
carbapenems, cephalosporins

3. Katakweba
et al., 2018k

Tanzania 32/32
(100%)

32/32
(100%)

CTX-M (32) Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Penicillins, cephalosporins ¶

Katakweba
et al., 2018l

22/22
(100%)

22/22
(100%)

CTX-M (22)

4. Kimera et al.,
2021

Tanzania NR 7 CTX-M (7) Tetracyclines, Sulphonamides, Fluoroquinolones,
Aminoglycosides, Phenicols, Penicillins, carbapenems,
cephalosporins ¶

5. Mgaya et al.,
2021c

Tanzania 1 0 None Tetracyclines, Sulphonamides, Fluoroquinolones, Penicillins,
Carbapenems, cephalosporins ¶

Mgaya et al.,
2021d

4/4
(100%)

1/4
(25%)

CTX-M (1)

6. Okubo et al.,
2019

Uganda 0/63
(0%)

0 None N/A
* co-existence of genes observed in isolates in this study
¶ Study reported MDR ESBL E. coli isolates
a- 58 weeks, b- 7 weeks, c- broiler, d- layer, e- chick broiler, f- pullet, g- small/medium scale, h-backyard farm, i-chicken, j-turkey, k- intensive, l- extensive
NR- Not reported N/A – Not applicable
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carbapenems (Saino et al., 2015). Unfortunately, phenotypic

resistance patterns were not reported in this study.

The coexistence of ESBL genes was reported in ten studies

(30.3%) and in nine of these, blaTEM co-existed with blaCTX-M
within the same ESBL-E. coli strains. This is corroborated by the

findings of Jena et al. (2017) and Sharma et al. (2013) that reported

that CTX-M/TEM coexistence is the most commonly observed.

Major concerns have been raised about the risk of zoonotic

transfer of ESBLs from poultry to humans in Africa by several

investigators. This is mainly based on the presence of the same

CTX-M ESBL gene variants in poultry and humans (Alonso et al.,

2017; Falgenhauer et al., 2019; Aworh et al., 2020). The practice of

using poultry litter as soil fertilizers for crop production (Adeleye

et al., 2010) and the detection of some genetically related ESBL-E.

coli isolates in poultry and poultry farm environments (Tansawai

et al., 2019) highlight a possible spread of ESBL-E. coli from poultry

to humans. This constitutes a risk to poultry farmers and farm

attendants through contact with the contaminated animal-related

environment and consumers through consumption of possibly

contaminated poultry meat and crops. On the other hand, ESBL
Frontiers in Antibiotics 15
gene variants such as blaCTX-M-15 and blaTEM-1 which are also

commonly associated with clinical and community settings within

and outside Africa (Zhao and Hu, 2013; Storberg, 2014; Mshana

et al., 2016) were detected in poultry isolates across studies from the

three regions included in this review. This suggests the possibility of

a zoonotic spread in the opposite direction, humans to poultry, or

the exposure of both human and poultry populations to a common

environmental source. Notably, the role of human sewage in the

contamination of the environment with ESBL bacteria has been

postulated within and outside Africa (Benavides et al., 2018;

Berendes et al., 2020).

Although research confirming the direction of spread of ESBLs

is sparse, the circulation of ESBLs between poultry, humans, and the

environment is highly probable. The persistence of ESBLs can be

linked to the dispersion of ESBL-producing bacterial clones,

exchange of genes that encode ESBLs, or transfer of gene-carrying

plasmids. The variety of these mechanisms make the identification

of the sources and transmission routes of ESBL bacteria difficult

(Valentin et al., 2014).

The combination disc test (a test which measures the inhibition

zone around a disk of cephalosporin and around a disk of the same

cephalosporin plus clavulanate) or the E test (which quantifies the

synergy between extended-spectrum cephalosporins and

clavulanate) are the recommended confirmatory phenotypic tests

by the CLSI and EUCAST guidelines (Soliman et al., 2020;

EUCAST, 2021). However, only six studies (20%) which assessed

phenotypic resistance employed the combination disc method, and

no study used the E test. Seventeen studies (56.7%) used the DDST,

and the rest of the studies used the VITEK test or broth

microdilution. While it is simple and easy to interpret, a reduced

sensitivity of the DDST (ranging from 79% - 97%) has been

reported (EFSA, 2011; Giriyapur et al., 2011). With this test, false

negatives can occur for isolates harbouring SHV-2, SHV-3, and

TEM-12 genes (Rawat and Nair, 2010), none of which were

identified by studies included in this review. It is also worth

noting that DDST was employed in three out of the four studies

that reported 0% ESBL genes in E. coli isolates. Fortunately, most of

the studies also carried out genotypic confirmation using PCR or

microarray analysis. However, the common practice among studies

was to carry out genotypic screening using isolates of ESBL

producers previously confirmed by phenotypic tests. This could

have led to an underestimation of ESBL levels especially in studies

where genotypic confirmation was not carried out.

Resistance to one or more antimicrobial classes, such as

aminoglycosides, fluoroquinolones, sulphonamides and

tetracyclines, was the most frequently reported in studies across

the three regions. Additionally, MDR ESBL-E. coli isolates were

reported in 12 studies (36.4%). This is not unexpected because the

plasmids on which ESBLs are located often carry resistance genes to

other antimicrobial classes (Bajpai et al., 2017). Research suggests

an association between resistance to quinolones and ESBL

production which can be explained by the coexistence of ESBL

genes with qnr genes which code for resistance to quinolones

(Paterson and Bonomo, 2005; Pakzad et al., 2011). This supports

the findings of this review. Although only seven studies (21%)
FIGURE 4

Frequency of studies reporting detection of ESBL gene families
by region.
FIGURE 5

Frequency of studies reporting AMR patterns by region.
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TABLE 5 Methods and guidelines employed for ESBL detection.

Publication
Details

Location/
Region

Antibiotic susceptibility test Phenotypic
confirmatory

test

Genotypic
detection test

Screened
Genes

Accreditation
body

Agabou et al.,
2016

Algeria/North
Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
SHV

EUCAST

Belmahdi et al.,
2016

Algeria/North
Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
SHV

CA-SFM

Chabou et al.,
2018

Algeria/North
Africa

N/A N/A PCR TEM, CTX-M,
SHV

N/A

Messaili et al.,
2019

Algeria/North
Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
SHV

CA-SFM

Moawad et al.,
2018

Egypt/North
Africa

Broth microdilution VITEK test Microarray analysis TEM, CTX-M,
OXA, SHV

German Institute for
Standardization

Ramadan et al.,
2018

Egypt/North
Africa

Broth microdilution Broth
microdilution

PCR TEM, CTX-M,
OXA, SHV

CLSI

Badi et al.,
2018

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
SHV

CLSI

ben Sallem
et al., 2012

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
OXA, SHV

CLSI

Grami et al.,
2013

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR CTX-M CA-SFM

Hassen et al.,
2020

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
SHV

CLSI

Jouini et al.,
2007

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
SHV

CLSI

Kilani et al.,
2015

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
SHV

CLSI

Kilani et al.,
2020

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
SHV

CLSI

Maamar et al.,
2016

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
OXA, SHV

CLSI

Mnif et al.,
2012

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
OXA, SHV

CLSI

Saidani et al.,
2019

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR CTX-M CA-SFM

Sghaier et al.,
2019

Tunisia/
North Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
OXA, SHV

CLSI

Falgenhauer
et al., 2019

Ghana/West
Africa

NR Combination disc
test

PCR Not specified EUCAST

Ayeni et al.,
2015

Nigeria/West
Africa

Disk diffusion Double disk
synergy test

PCR N/A CLSI

Aworh et al.,
2020

Nigeria/West
Africa

Disk diffusion NR PCR TEM, CTX-M,
OXA

CLSI

Ayandiran
et al., 2018

Nigeria/West
Africa

Disk diffusion VITEK test PCR Not specified CLSI

Chah et al.,
2018

Nigeria/West
Africa

Disk diffusion Combination disc
test

PCR TEM, CTX-M,
OXA, SHV

CLSI

Fortini et al.,
2011

Nigeria/West
Africa

N/A N/A PCR TEM, CTX-M,
SHV

N/A

Kwoji et al.,
2019

Nigeria/West
Africa

Disk diffusion Combination disc
test

PCR N/A CLSI

(Continued)
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reported data on ABU, it is interesting to note that these studies

reported the use of all the four antibiotic classes (aminoglycosides,

fluoroquinolones, sulphonamides and tetracyclines) to which

resistance was observed across the three regions. The resistance

patterns of ESBL-E. coli isolates to commonly used antibiotics in

this study may add to the evidence which implicates ABU as a risk

factor for the development of AMR (Depoorter et al., 2012).

Although not all studies provided data on types of production

systems, higher ESBL-E. coli proportions (23.8 – 93.8%) were

reported in large-scale farms compared to the small and medium

scale farms (0 - 35.3%). This can probably be explained by the

tendency of large-scale intensive farms to utilize antibiotics at

higher rates than farms operated on a small scale to prevent and

treat infectious diseases and for growth promotion purposes

(Manyi-Loh et al., 2018).

Two of the three studies conducted in backyard farms reported

ESBL proportions ranging from 2.8 to 2.9%. Albeit low, the

confirmation of ESBLs in this setting cannot be overlooked

because backyard production systems have been associated with a

greater risk of human exposure to resistant bacteria of poultry

origin. This can be attributed to the frequent and close contact

between poultry and humans who live in close quarters with these

birds and consume poultry products directly from their keep

(Graham et al., 2017; Alders et al., 2018). Regardless, this is not

to trivialize the risk raised by large-scale commercial farms to

consumers of products of poultry origin from these farms and the

potential spread of AMR in the environment through animal waste
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derived from food production and use of poultry litter as fertilizer in

crop production.

Only five studies (15.2%) reported the age of birds sampled with

varying levels of ESBL s. However, the difference in reporting levels

(counts and proportions), variety of samples used in the different

studies, and few numbers of studies made it difficult to make

meaningful comparisons to strongly associate age with ESBL

levels. Most of the studies reported the sampled population as

simply “poultry” or “chicken”. However, in the few that specified

sampling broilers and layers, no major difference was noted in the

average ESBL levels. This is in contrast with the findings from

previous studies which reported higher levels of ESBLs in broiler

(87% and 81%) compared with layer farms (42% and 65%) in Asia

and Europe respectively (Blaak et al., 2015; Brower et al., 2017).

Again, most of these ESBL proportions were estimated using non-

probabilistic sampling and so it was not possible to extrapolate the

true ESBL prevalence in these populations.

Most of the studies (26 studies, 78.8%) were published after 2015.

However, this does not translate to increased detection of ESBLs from

2015 onwards because the study period often varied from publication

year. On the other hand, there was a 50% reduction in the number of

published studies in 2020 compared to the previous two years. The

reduction can probably be explained by the preoccupation of the

scientific community with building the evidence base during the

COVID-19 pandemic, and a bias on the part of publishers who were

more likely to publish novel findings of COVID-19 than other topics.

Furthermore, the lockdown and travel restrictions resulting from the
TABLE 5 Continued

Publication
Details

Location/
Region

Antibiotic susceptibility test Phenotypic
confirmatory

test

Genotypic
detection test

Screened
Genes

Accreditation
body

Ojo et al., 2016 Nigeria/West
Africa

Disk diffusion, broth microdilution
and broth macrodilution

Double disk
synergy test

PCR TEM, CTX-M,
SHV

CLSI

Okpara et al.,
2018

Nigeria/West
Africa

Disk diffusion Combination disc
test

PCR CTX-M CLSI

Vounba et al.,
2019

Senegal/West
Africa

Disk diffusion Double disk
synergy test

PCR TEM, CTX-M,
OXA, SHV

CLSI

Langata et al.,
2019

Kenya/East
Africa

N/A N/A PCR TEM, CTX-M,
OXA, SHV

N/A

Büdel et al.,
2020

Tanzania/
East Africa

Broth microdilution NR Microarray analysis CTX-M EUCAST

Katakweba
et al., 2018

Tanzania/
East Africa

Disk diffusion VITEK test PCR CTX-M CLSI

Kimera et al.,
2021

Tanzania/
East Africa

Disk diffusion Combination disc
test

PCR TEM, CTX-M,
SHV

CLSI

Mgaya et al.,
2021

Tanzania/
East Africa

Disk diffusion Combination disc
test

PCR TEM, CTX-M,
SHV

CLSI

Okubo et al.,
2019

Uganda/East
Africa

Broth microdilution NR PCR TEM, SHV,
OXA

CLSI/EUCAST
N/A, Not Applicable; N/R, Not Reported.
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pandemic led to a closure of scientific workplaces and the

interruption of field work, and consequently an extension of

research time, re-starting some experiments, and putting some

experiments and field activities on hold (Subramanya et al., 2020).

There was also the issue of redirection of funding intended for other

research areas to COVID-19 research (Chinnery et al., 2021).
4.1 Research gaps

Studies included in this review came from only nine out of 54

countries (16%) in Africa. Notably, no studies from Central and

Southern Africa were found to be relevant to the scope of this

review. While it can be argued that ESBLs are probably being

assessed in other food-producing animals, or poultry-derived

products, the dearth of publications related to ESBL-E.coli in

poultry in African countries is evident. In addition, no

surveillance reports assessing the trends of ESBL-producing E.

coli from poultry in Africa were identified by this study. The

World Health Organization (WHO) commissioned the Tricycle

project, an integrated multisectoral surveillance project to monitor

ESBL-producing E. coli across human, poultry, and environment

sectors (WHO, 2021), that is currently being implemented in

African countries such as Zimbabwe. This paucity of data hinders

the assessment of the risk that ESBL-producing E. coli pose to both

animals and humans in Africa.

In terms of sampling, the use of convenience and unspecified

sampling strategies was observed in about 94% of studies.

Unfortunately, this makes it difficult to make generalized

inferences with the findings of these studies since the sampled

population is not representative of the general poultry population.

Consequently, it poses a challenge to policy makers because good

quality data is required to inform effective and sustainable policies

and interventions.

Finally, incomplete reporting of data in the studies especially

those related to poultry populations (age, health status, specific

poultry species), type of production systems, patterns, and extent of

antibiotic use on farms, and ESBL levels prevents meaningful

comparisons from being drawn and the identification of

production systems that are at a higher risk of becoming exposed

and colonized with ESBLs, therefore presenting a risk to consumers

and dissemination of AMR into the environment.
4.2 Limitations of the study

The findings of this review should be interpreted bearing the

following limitations. Due to the nature of this study, that was

conducted as part of the requirements to fulfil a master’s degree in

One Health, the study selection, screening, and data extraction

processes were carried out by one reviewer with regular checks

undertaken by the project supervisor. This increased the risk of

bias while undertaking these steps as normally, study screening and

data extraction would be conducted in parallel by two independent

reviewers in systematic reviews. A protocol (ID: CRD42021259872)
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was developed for this systematic review a priori and submitted to

PROSPERO (https://www.crd.york.ac.uk/prospero/) and the entire

review process was carried out with strict adherence to the protocol.

In addition, the entire screening process was documented, and all

identified studies were uploaded in a shared Mendeley folder where

the supervisor could access them for rechecks.

Only studies published in English were included in this

review; this could have led to the exclusion of studies and

reports from African countries where English is not one of the

official languages (e.g., French- and Portuguese-speaking

countries). The likelihood of excluding relevant data was also

increased by the rejection of articles for which full texts could not

be obtained. The findings of this review might have been

influenced by these excluded studies.

This review excluded some studies which assessed poultry

alongside other species, and others that assessed poultry feces

alongside poultry-derived products when ESBL data was reported

in aggregated form. This made it impossible to discern the

proportion of the total ESBLs levels that could be attributed to

the animal population of interest. In this review, studies that did not

specify the type of poultry were included with the assumption that

they met the inclusion criteria. However, there is no guarantee that

ducks and geese were not sampled in these studies, and this may

have added some bias to the review. Finally, the interpretation of

findings was carried out with the data provided by studies with

variable quality and levels of risk of bias. However, a quality and risk

of bias assessment was conducted and only studies with moderate

and low risk of bias were included in this review.
4.3 Implications of findings and
recommendations

This review identified a major gap in the quantity and quality of

evidence related to ESBL-E. coli of poultry origin in Africa. Due to

the limited amount of data gathered by this review, it is

recommended that additional research determining the

prevalence of ESBL-E. coli and the diversity of ESBL genes

circulating across sectors should be carried out following a One

Health approach especially in the Southern and Central Africa

regions. More attention should also be given to addressing risks of

bias and controlling confounding in studies to build high-quality

evidence base on which extrapolations can be made to inform

development of effective policies and interventions.

The isolation of MDR ESBL-E. coli isolates in three regions in

Africa emphasizes the urgent need to address the problem of AMR

on the continent. From a socioeconomic perspective, the use of

antibiotics for growth promotion is popular because it is done to

obtain maximum yield from livestock production (Durso and Cook,

2014), hence protecting the livelihood of the farmer. However, the

use of antibiotics at sub-therapeutic doses leads to selection of

resistant bacteria in the intestinal flora of birds thereby contributing

to AMR (Essack et al., 2017). In many African countries, antibiotics

are often used to make up for loopholes in biosecurity and good

animal husbandry practices (e.g., provision of good nutrition,
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vaccination) (Hedman et al., 2020). Therefore, the imposition of

restrictions on ABU may have a negative impact on both animal

health and welfare as well as the livelihood of farmers and local

economies. Instead, farmers should be sensitized on the importance

of implementing strict biosecurity measures and good animal

husbandry practices, in order to prevent introduction of

pathogens and therefore, reducing the burden of disease in their

flocks and the need for antibiotics. This can be done by engaging

farmers in experiential learning activities as seen in the FAO’s

Farmer Field School (FFS) initiative (FAO, 2016).

This review identified ESBL genes in poultry that are also

commonly isolated in humans, suggesting a potential risk of

zoonotic transfer of ESBL-producing E. coli. However, the full

extent of ESBL-producing E. coli and its zoonotic transmission

are not yet fully understood due to the limited evidence available in

Africa. Therefore, there is a need for more research employing a

One Health approach, exploring AMR across sectors (humans,

animals, and the environment) and adequate source attribution

methods. These methods allow the identification of key hotspots

where interventions are likely to be more effective in reducing the

risk of AMR emergence and spread to humans and animals

(Valentin et al., 2014). In addition, there is a need for increased

awareness and engagement of key stakeholders in all key sectors to

tackle ESBL-producing bacteria in Africa. In the development of

national action plans, cooperation and collaboration between

departments of veterinary services, and public health, the

Government and all actors in the antibiotic supply chain is

essential. Considerations should also be made with respect to

resource allocation for the integrated surveillance of AMR across

human, animal, and environmental sectors to generate data to

support evidence-based policies and interventions for AMR.
5 Conclusions

The occurrence of ESBLs in poultry populations has been

identified as a matter of public health importance worldwide

given the zoonotic risk posed by these species to humans mainly

through direct contact with birds and consumption of poultry-

derived products. Synthesis of the available data revealed a frequent

detection of ESBL-producing E. coli in poultry in Africa at varying

levels across regions. The blaCTX-M gene was identified as the most

predominant gene family in this review. However, the full burden of

ESBL-producing E. coli and its risks to humans and animals are not

yet fully understood due to the limited evidence available in Africa.

Further research addressing these gaps is therefore recommended.
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