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Abstract

Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with
erect (strongly adducted, more vertically oriented) posture are found in mammals
that are particularly heavy (graviportal) or show good running skills (cursorial), while
crouched (highly flexed) limbs are found in taxa with more generalized locomotion.
In Reptilia, crocodylians have a “semi-erect” (somewhat adducted) posture, birds
have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs.
Both synapsids and reptiles underwent a postural transition from sprawling to more
erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent
among archosauriforms in the Triassic Period. However, limb posture in many key
Triassic taxa remains poorly known. In Synapsida, the chronology of this transition
is less clear, and competing hypotheses exist. On land, the limb bones are subject to
various stresses related to body support that partly shape their external and internal
morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy
bone tissue) tend to orient themselves along lines of force. Here, we study the link
between femoral posture and the femoral trabecular architecture using phylogenetic
generalized least squares. We show that microanatomical parameters measured on
bone cubes extracted from the femoral head of a sample of amniote femora depend
strongly on body mass, but not on femoral posture or lifestyle. We reconstruct an-
cestral states of femoral posture and various microanatomical parameters to study
the “sprawling-to-erect” transition in reptiles and synapsids, and obtain conflicting
results. We tentatively infer femoral posture in several hypothetical ancestors using
phylogenetic flexible discriminant analysis from maximum likelihood estimates of the
microanatomical parameters. In general, the trabecular network of the femoral head
is not a good indicator of femoral posture. However, ancestral state reconstruction
methods hold great promise for advancing our understanding of the evolution of pos-

ture in amniotes.
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1 | INTRODUCTION

Limbs first evolved during the Devonian Period in aquatic organ-
isms, such as Acanthostega, and presumably were first used for loco-
motion in shallow waters and to rest on the bottom (Coates, 1996;
Laurin, 2010; Molnar et al., 2021). In later organisms, these primor-
dial limbs experienced new functional constraints inherent to land
environments, related in particular to the support of body weight.
These constraints shaped the limbs' external and internal morphol-
ogy, and thereby, the first land vertebrates developed novel loco-
motor and postural strategies favouring access to various ecological
niches and contributing to the evolutionary success of tetrapods.
The first terrestrial vertebrates were quadrupedal with a sprawling
limb posture, that is, the stylopod was held horizontally with the dis-
tal end pointing laterally (Bakker, 1971; Charig et al., 1972). A recent
study combining palaeoichnology (the study of ancient tracks) and
robotics supported this inference with quantitative methods for the
first time in an early stem amniote (Nyakatura et al., 2019). Today,
extant amniote taxa (reptiles and mammals) present a great diversity
of postures and locomotor modes associated with a morphological
and microanatomical disparity.

Both reptiles and synapsids underwent a postural transition
during the Mesozoic Era. The first parasagittally locomoting erect bi-
pedalamniotes seem to have evolved convergently during the Triassic
in the archosaurian clades Avemetatarsalia and Pseudosuchia (Cuff
et al., 2022; Hutchinson, 2006; Kubo & Benton, 2009; Sereno, 1991;
Sullivan, 2015). Parasagittally locomoting erect bipedalism is often
cited as a key element in the success of Avemetatarsalia (e.g. Kubo
& Kubo, 2012). However, the steps that led to this bipedal state re-
main enigmatic and more conclusively determining the locomotion
and posture adopted by many Triassic taxa, such as the archosauri-
form Euparkeria, involve considerable obstacles and ambiguities (e.g.
Bishop et al., 2020). Although it is accepted that synapsids experi-
enced a postural transition from approximately transversely oriented
to more parasagittally oriented limbs, the timing of this transition
has been widely debated without reaching a consensus. Some au-
thors (Jenkins, 1973; Jenkins & Parrington, 1976; Pridmore, 1985;
Sereno, 2006) have argued that early mammals had already acquired
a more parasagittal limb posture and gait by the Late Triassic/Early
Jurassic based on anatomical evidence, while others (Gambaryan &
Kielan-Jaworowska, 1997; Kielan-Jaworowska & Hurum, 2006) fa-
voured the hypothesis of a later acquisition in early therians based
on both anatomy and ichnology. More erect limbs may have existed
as early as the Permian. Indeed, several lineages of Permo-Triassic
therapsids, such as Anomodontia and Cynodontia, have been de-
scribed as having had a “semi-erect” posture based on anatomical
and biomechanical evidence (Blob, 2001; Fahn-Lai et al., 2018;
Frobisch, 2006). Today, posture in mammals and in older stem taxa,
such as Dimetrodon, still raises many questions, triggering numerous
studies that enrich our knowledge of the evolution of locomotion
in synapsids (Brocklehurst et al., 2022; Jones et al., 2021; Regnault
etal., 2020).

Limb bones support the weight of the body and are therefore
subject to various forces that partly shape their external and inter-
nal form during ontogeny. Yet bone trabeculae tend to orient them-
selves along the lines of force: this is known as Wolff's law, or the
trajectorial theory (Wolff, 1893). Before this law was formulated, von
Meyer (1867) had interpreted the spongy structures of the human
femoral head in the light of Culmann's remarks, who had noted a
certain similarity with the internal tension and compression lines of
a crane. Since these early observations, the functional role of tra-
becular bone, that is, its ability to distribute mechanical stresses to
improve strength (Currey, 2013), has received increasing attention.
Indeed, numerous studies have demonstrated the effect of differ-
ent factors, such as allometry, locomotion or lifestyle, on trabecular
bone in various skeletal elements (limb bones, vertebrae, etc.) in both
reptiles and mammals (Amson et al., 2017; Biewener et al., 1996;
Bishop et al., 2018; Doube et al., 2011; Hildebrand et al., 1999;
Hollister et al., 1994; Kivell et al., 2018; Plasse et al., 2019; Pontzer
et al., 2006; Ryan & Ketcham, 2002; Ryan & van Rietbergen, 2005;
Smit et al., 1997; Tsegai et al., 2013). These studies have used arange
of methods, from computer simulations including finite element
analyses (FEA), to in vivo experiments, to the study of bone cubes
or spheres, also known as VOlIs (volume of interest) or ROIs (region
of interest), which are defined within a bone to virtually subsample
a region to be analysed. Beyond functional adaptations, trabecular
bone, like any biological structure, is impacted by various factors
(ontogeny, metabolism, phylogeny, etc.) whose influence remains
enigmatic (Currey, 2013; Kivell, 2016).

Methods of ancestral state reconstruction aim to infer the char-
acteristics of ancestral taxa from the characteristics of their de-
scendants using models of character evolution (Pagel, 1999). They
have been extensively used to study vertebrate evolution: from in-
ference of metabolic rate (Benton, 2021; Legendre et al., 2016) and
lifestyle (Canoville & Laurin, 2010) to “resurrection” of genetic se-
quences (Chang et al., 2002; Thornton, 2004), diet reconstruction
(Brocklehurst, 2016) and soft tissue studies (Campione et al., 2020;
Tsai et al., 2018). The use of these methods for postural issues is
rarer (Buchwitz et al., 2021; Grinham et al., 2019), and, to our knowl-
edge, they have never been applied to the femoral trabecular archi-
tecture in the context of the postural transitions in amniotes during
the Mesozoic.

In this study, we use phylogenetic comparative methods, such
as phylogenetic generalized least squares (PGLS), to better char-
acterize the relationship between femoral posture and the femoral
head trabecular architecture in amniotes. Given previous studies
highlighting that larger taxa tend to have greater bone volume and
thicker trabeculae (Doube et al., 2011; Houssaye et al., 2016), we
expect to find similar scaling relationships with our sample. Also,
larger taxa exhibit more erect (adducted, upright) limbs, which re-
duces weight-related stresses (Biewener, 1990), and this could re-
duce anisotropy (Doube et al., 2011). As our sample contains taxa
with a variety of femoral postures (from erect to sprawling), we

expect to find differences in anisotropy between postural groups.

95U8017 SUOWILWOD SAIE81D) 3l dde 8y} Ag pauienoB a1e S991Le YO ‘8SN J0'S3|NJ 40} Akl 8UlUO AS|IA UO (SUONIPUOD-PUE-SWLIS)L0D AB 1M ARRIq 1 )BUIUO//:SANY) SUOIPUOD PUe SIS | 84} 89S *[£202/90/92] Uo Ariqiauliuo A8|IM ‘1591 Aq 28THT GRI/TTTT 0T/10p/wod AS|1m Alelq i pul|uoy/:sdiy wolj pspeojumod ‘0 ‘TOTE0ZHT



GONET ET AL.

We use ancestral state reconstruction methods in a novel man-
ner to infer the ancestral condition of various microanatomical
parameters measured on bone cubes extracted from the femoral
head of a sample of extant amniote taxa, but also to more directly
infer ancestral posture at nodes of interest in the context of the
“sprawling-to-erect” transitions in reptiles and synapsids. This
study not only sheds light on the relationship between posture
and microanatomy in amniotes but also aims to demonstrate the
relevance of ancestral state reconstruction approaches to pos-

tural issues in vertebrates.

2 | MATERIALS AND METHODS
2.1 | Biological sample

To conduct the statistical analyses in this study, we compiled a set of
microanatomical data measured on bone cubes extracted from the
femoral head of a large number of amniote taxa. We retrieved the
list of taxa from Doube et al. (2011) and enriched it with new taxa,
notably squamates and turtles, which were not previously included.
However, we did not retain all mammal taxa, as they were over-
represented in the study by Doube et al. (2011). Indeed, if we con-
sider extant species diversity, there are about 5000 extant species
of mammals (Upham et al., 2019), compared to about 15000 extant
species of reptiles: 10000 species of birds (Jetz et al., 2012), about
5000 species of limbed squamates (Brandley et al., 2008), about 350
species of turtles (Thomson et al., 2021) and about 25 species of
crocodylians (Brochu, 2003). Our sample is composed of 93 amniote
species for which femoral posture is known (Table 1). These include
57 mammal species and 36 reptile species (24 birds, 6 squamates,
3 crocodylians and 3 turtles). Each species is represented by one
individual. We tried to build our sample to be as representative as
possible of the taxonomic and postural diversity of amniotes. Our
sample contains three extinct taxa: Raphus cucullatus, Pezophaps soli-
taria and Dinornis sp. The latter became extinct recently (within the

last five centuries).

2.2 | Postural categories

We defined four postural categories: sprawling, crouched, erect and
“semi-erect.” In sprawling taxa (lepidosaurs, turtles, but also mono-
tremes, such as Ornithorhynchus), the femur extends laterally, while
in crouched taxa (small mammals and small birds), it points more or
less anteriorly. In erect taxa (large mammals and large birds), the
femur is held more vertically under the body. Finally, the “semi-
erect” posture of crocodylians can be regarded as intermediate be-
tween sprawling and erect. We are aware of the limitations of such a
classification. For example, that limb posture in amniotes is more of
a continuum than well-defined postural categories, or that the term

“semi-erect” is evolutionarily and functionally ambiguous, but these
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categories remain practical in the framework of comparative phylo-

genetic studies.

2.3 | Data acquisition

We strictly followed the protocol by Doube et al. (2011) for ex-
tracting new bone cubes in order to obtain comparable data. To
validate the protocol, we retrieved some of the bone cubes from
Doube et al. (2011) available online. The bone cubes were extracted
and processed in ImageJ (Abramoff et al., 2004) to reproduce some
of the trabecular measurements provided in the electronic sup-
plementary material of Doube et al. (2011). CT data for the new
taxa in the sample were obtained either from the literature or by
scanning the femora on the AST-RX platform of the Muséum na-
tional d'histoire naturelle and on the MRI platform of the university
of Montpellier. Bone cubes were extracted in ImageJ with Bonel
1.4.3 (Doube et al., 2010) following the fit sphere routine (Doube
et al., 2011). We extracted the largest cube that could be contained
in a sphere fitted by least squares in the femoral head (Figure 1).
First, the scans of the femur were resliced in ImageJ to position
the bone vertically. Secondly, we placed six points to delineate the
volume of the femoral head: two points to delineate the upper and
lower parts of the femoral head, and four additional points (an-
terior, posterior, medial and lateral) on the slice halfway between
the two slices comprising the first two points. Once extracted, the
bone cubes were binarized using IsoData thresholding, purified
(with BonelJ), eroded (in ImageJ: Process > Binary), purified again
and dilated (in ImageJ: Process > Binary). For a detailed description
of the procedure for extracting and processing bone cube data, see
Doube et al. (2010). We then measured six parameters with Bone)J
(Figure 1): BV/TV, the bone volume fraction, corresponding to the
number of bone voxels divided by the total number of voxels in the
cube; BS/TV, the bone surface area per unit volume, defined as
the bone surface area, obtained by summing the surface area of
all the triangles constituting a 3D mesh of the trabecular network,
divided by the total volume of the cube; Tb.Th, the mean trabecular
thickness; Th.Sp, the mean trabecular spacing; Conn.D, the con-
nectivity density, which corresponds to the number of trabeculae
divided by the total volume of the cube; DA, the degree of anisot-
ropy, reflecting a more or less pronounced trabecular orientation
(0<DA<1; 0 indicating no orientation and 1 parallel trabeculae).
The new unprocessed bone cubes are publicly available at https://
doi.org/10.5061/dryad.83bk3j9x2.

Ketcham and Ryan (2004) noted that texture orientations could
be over-represented towards the edges and corners of a cubic vol-
ume. However, our study is not affected by this “edge and corner
bias.” Indeed, in BoneJ 1.4.3, anisotropy is calculated using the mean
intercept length (MIL) method from sampling spheres randomly
distributed inside the image stack (see Doube et al., 2010). These
spheres are never closer to the sides of the image than their radius

(M. Doube, personal communication).
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BV/TV = Bone volume/Total volume

BS/TV = Bone surface/Total volume

Tb.Th =Trabecular thickness

Tb.Sp =Trabecular spacing

Conn.D = Connectivity density (number of trabeculae)

DA = Degree of anisotropy (trabecular orientation)

FIGURE 1 Proximal femur of Gypaetus barbatus (MNHN-ZO-AC-1993-52). Bone cubes were extracted following the fit sphere routine
(Doube et al., 2011). We extracted the largest cube that could be contained in a sphere fitted by least squares in the femoral head. The
microanatomical parameters were measured in ImageJ with BoneJ 1.4.3 (Doube et al., 2010).

respectively. The trees in Newick tree format are available as sup-

porting information (Appendix S1).

2.6 | Phylogenetic signal

We tested the phylogenetic signal in femoral posture. This was done
using the delta statistic (Borges et al., 2019), which is based on the
uncertainty associated with ancestral state reconstruction. The
delta statistic is proportional to the phylogenetic signal and inversely
proportional to the uncertainty at the nodes. We tested the phylo-
genetic signal in femoral posture with our 100 trees and calculated
a p-value each time based on 10 random permutations of femoral
posture at the tips of the tree branches. We also searched for a phy-
logenetic signal in the aforementioned microanatomical parameters
using the phylosig function of the R package phytools (Revell, 2012),
which computes the K-statistic (Blomberg et al., 2003). A strong phy-
logenetic signal, implying that closely related species are more simi-
lar to each other than would be expected under a Brownian model
of evolution, is indicated by a K-statistic greater than 1. A weaker
phylogenetic signal than that expected under a Brownian model of
evolution is indicated by a K-statistic less than 1. The function also
performs a randomization test to derive a p-value (1000 randomiza-

tions). We calculated K for the 100 trees in our phylogenetic tree set.

2.7 | Phylogenetic generalized least squares

All the microanatomical parameters presented above have been
previously associated with femoral posture, body mass or lifestyle
in several amniote clades (Bishop et al., 2018; Doube et al., 2011;
Mielke et al., 2018; Plasse et al., 2019). As mentioned above, the
taxa in our sample show a diversity of femoral postures, as well as a

variety of lifestyles (semi-aquatic, arboreal, fossorial and terrestrial;
see Table 1), but also differ greatly in terms of body mass (from 2.33 g
in Suncus etruscus to 3.22t in Elaphas maximus). To explore these re-
lationships with our sample, we designed several linear models in R
using the gls function from the package nlme (Pinheiro et al., 2021).
The function fits a linear model using generalized least squares
(GLS). It allows the model errors to be correlated and/or have une-
qual variances. It is especially appropriate in the case of phylogenetic
dependence. Here the expected covariance between two taxa for a
given trait is the evolution of that trait under a Brownian model dur-
ing the time between the root and their last common ancestor. PGLS

was conducted with all 100 phylogenetic trees.

2.8 | Ancestral state reconstruction

We used the ace and fastAnc functions in the R packages ape
(Paradis & Schliep, 2019) and phytools (Revell, 2012) respectively
to reconstruct the ancestral states of femoral posture and of the
microanatomical parameters. For femoral posture (discrete), inferred
states are empirical Bayesian posterior probabilities under an equal
rate Markov model. For the microanatomical parameters (continu-
ous), inferred values are maximum likelihood estimates. Several
nodes were of particular interest to us (Figure 2). In reptiles, the
Triassic divergence between avemetatarsalians and pseudosuchi-
ans (Archosauria) also corresponds to the appearance of the first
erect forms within these two clades (Hutchinson, 2006). In synap-
sids, the divergence between monotremes and therians (Mammalia)
in the Early Jurassic, and that between metatherians and eutheri-
ans (Theria) in the Late Jurassic, are important because they rep-
resent two hypothetical origins of more parasagittal limbs in this
clade (Kielan-Jaworowska & Hurum, 2006; Pridmore, 1985). For the
microanatomical parameters, we constructed a distance matrix to
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Metatheria

Eutheria

Monotremata

Squamata

Testudines

Pseudosuchia

*

Dinosauria
Carbon | Perm | Triassic | Jurassic | Cretaceous Pg |Ng
Paleozoic Mesozoic Cenozoic
[ [ | I I I I |
350 250 150 50 0

Million years ago

FIGURE 2 Simplified cladogram showing the relationships
between the main amniote taxa studied. Stars indicate nodes of
interest for ancestral reconstruction: 1, Archosauria; 2, Mammalia;
3, Theria.

compare the inferred values at the nodes of interest to our extant
sample. Node states and values were reconstructed for the 100 phy-
logenetic trees at our disposal.

2.9 | Phylogenetic flexible discriminant analysis

We used phylogenetic flexible discriminant analysis (PFDA) to dis-
criminate femoral posture based on the microanatomical parameters
and to infer posture in the hypothetical last common ancestors of
Archosauria, Mammalia and Theria while accounting for the phylog-
eny. In practice, PFDA consists of a combination of linear regressions
where a categorical dependent variable is recoded into dummy varia-
bles to be treated as a continuous variable (Motani & Schmitz, 2011).
PFDA includes a phylogenetic variance-covariance matrix whose
terms reflect the shared evolutionary time between two given taxa.
The matrix is multiplied by lambda (Pagel, 1999), which is optimized
to minimize the error of the model. We performed leave-one-out
cross-validation with our 100 phylogenetic trees to identify the
combination of microanatomical variables that best explains femo-
ral posture. PFDA cannot make inferences at nodes. Instead, we
inferred femoral posture in three hypothetical common ancestors
to which we assigned the values of the microanatomical param-
eters derived from the ancestral state reconstruction and which we
branched 0.1 Myr before each node of interest (branch length=0.1
Myr; see Appendix S1).

JournaL of Evolutionary Biology

3 | RESULTS
3.1 | Principal component analysis

Principal component analysis is moderately effective in sepa-
rating femoral postures based on the microanatomical param-
eters. The first two PCs account for almost 70% of the variance.
Crouched species occupy the centre-left of the graph, while erect
species are found in the centre-right (Figure 3). Sprawling and
“semi-erect” species are all in the middle of the graph and overlap
with crouched and erect species. In general, crouched mammals
occupy the upper part of the graph, while crouched reptiles are
found in the lower part. Crouched mammals and reptiles show a
similar dispersion. Conversely, erect mammals are concentrated
in the middle of the graph, while erect reptiles (birds) are more
dispersed and confined to the right side. BS/TV, Tb.Th, Th.Sp and
Conn.D are well represented on the first PC and are the main
contributors to the latter, while BV/TV and DA are better rep-
resented and contribute more to the second PC. BV/TV and DA
are positively correlated, as are BS.TV and Conn.D. The latter
two are also negatively correlated with Th.Sp. PCA plots show-
ing the first and third axes and the second and third axes are
available as supporting information (Appendix S2: Figures S1 and
S2), along with the numerical values of the PCA (Appendix S2:
Tables S2-54).

3.2 | Phylogenetic signal

The delta statistic for femoral posture ranges from 3.428 to
26.676 and is always significantly higher than the randomized del-
tas (p-values <0.001), indicating that femoral posture conveys a
strong phylogenetic signal (Table 2). The K-statistics for the mi-
croanatomical parameters are all significantly different from those
with a random distribution (Table 2). However, K is always less
than 1, indicating that closely related species are more distinct
from each other than would be expected with a Brownian model

of evolution.

3.3 | Interaction with microanatomy, posture, body
mass and lifestyle

The allometric relationships of the microanatomical parameters,
as shown by PGLS with our amniote sample (Table 3), are the fol-
lowing: the bone volume fraction (BV/TV) does not vary with body
mass, unlike all other parameters. Indeed, the trabecular thickness
(Tb.Th) and the trabecular spacing (Th.Sp) increase with body
mass, while the bone area per unit volume (BS/TV), the connectiv-
ity density (Conn.D) and the degree of anisotropy (DA) decrease
(Appendix S2: Table S5). However, none of the microanatomi-
cal parameters are associated with lifestyle or femoral posture
(Table 3).
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FIGURE 3 Principal component analysis showing the variation between the taxa in our sample. Eigenvalues and contribution of each
microanatomical variable to the first two PCs are shown. BS/TV, bone surface/total volume; BV/TV, bone volume/total volume; Conn.D,
connectivity density (number of trabeculae); DA, degree of anisotropy (trabecular orientation); Tbh.Sp, trabecular spacing; Th.Th, trabecular

thickness.

TABLE 2 Phylogenetic signal in the data.

Trait Mean delta statistic (min-max)

Femoral posture 14.525 (3.428-26.676)
BV/TV

BS/TV

Tb.Th

Th.Sp

Conn.D

DA

Mean K-statistic (min-max) Mean p-value (min-max)

<0.001*** (<0.001-<0.001)
0.002** (0.001-0.013)
0.001** (0.001-0.002)
0.009** (0.001-0.055)
0.009**(0.001-0.09)
0.02* (0.006-0.045)
0.005** (0.001-0.043)

0.141 (0.099-0.173)
0.209 (0.158-0.247)
0.22(0.149-0.283)

0.186 (0.119-0.238)
0.286 (0.242-0.328)
0.128 (0.076-0.159)

Note: Values are means obtained from 100 phylogenetic trees. Asterisks indicate mean p-values that are statistically significant: one asterisk (*)
indicates a mean p-value that is below or equal to 0.05; two asterisks (**) indicate a mean p-value that is below or equal to 0.01; three asterisks (***)

indicate a mean p-value that is below or equal to 0.001.

3.4 | Ancestral state reconstruction

A sprawling posture (Figure 4) is the most probable at the
Archosauria node (mean probability=0.487), followed by a
crouched posture (0.341). “Semi-erect” or erect postures are the
least probable (0.131 and 0.04, respectively). A crouched posture
is the most probable at the Mammalia node (0.886). Sprawling,
“semi-erect” and erect postures all have a probability of less than
0.1 (0.094, 0.011 and 0.009, respectively). A crouched posture
is even more likely at the Theria node (0.974). A sprawling pos-
ture has a probability of 0.02, while “semi-erect” or erect pos-
tures have a probability of only 0.003. We also reconstructed
the ancestral values for the microanatomical parameters. For the
hypothetical ancestor of archosaurs, the most similar extant de-
scendant according to the phenotypic distance matrix is Caiman
crocodilus. The most similar extant descendant to the ancestor of
mammals and therians is Tiliqua scincoides and Basiliscus basiliscus,

respectively. Graphs with all reconstructed states and numerical
values for nodes of interest are available as supporting informa-
tion (Appendix S2: Figures S3-59; Tables S6 and S7).

3.5 | Postural inferences at nodes

We do not present here the best PFDA model because the cross-
validation results associated with it are very unbalanced between
the postural categories (Appendix S2: Table S8). Instead, we show
the model with the most balanced cross-validation results for each
femoral posture (Table 4). It is based on the following combination of
microanatomical parameters: BV/TV, BS/TV, and Conn.D.

In all cases, PFDA is only moderately successful in discriminat-
ing femoral posture (mean model rate of correct classification: 62%;
Figure 5; Table 4). Although crouched species are reasonably recov-
ered by the analysis (73%), both erect and sprawling species hardly
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TABLE 3 Effect of body mass, lifestyle and femoral posture on the microanatomical parameters.

PGLS model formula

BV ~
by BM + LS + FP

BS ~
= BM + LS + FP

Tb.Th~BM + LS + FP

Th.Sp~BM + LS + FP

Conn.D~BM + LS + FP

DA~BM + LS + FP

Independent variable

BM
LS
FP
BM
LS
FP
BM
LS
FP
BM
LS
FP
BM
LS
FP
BM
LS

Mean chi-square (min-max)
0.812 (<0.001-2.428)
1.059 (0.767-1.531)
1.498 (0.655-3.255)

42.653 (18.355-55.78)
1.162 (0.727-1.532)
0.473(0.216-2.8)

13.567 (3.973-18.544)
0.231(0.119-0.435)
4.858 (2.403-9.646)
7.236 (1.074-10.341)
0.408 (0.145-0.665)
0.497 (0.154-2.456)

25.184 (18.105-29.566)

3.44 (2.524-4.577)
0.35(0.22-0.69)

11.352 (6.555-51.044)
0.782 (0.427-2.149)
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Mean p-value (min-max)
0.436(0.123-0.991)
0.787 (0.675-0.857)
0.687 (0.354-0.884)

<0.001*** (<0.001-<0.001)
0.762 (0.675-0.867)
0.924 (0.424-0.975)

0.002** (<0.001-0.049)

0.972(0.933-0.99)
0.197 (0.022-0.493)
0.015* (0.002-0.303)
0.938 (0.882-0.986)
0.917 (0.483-0.985)
<0.001*** (<0.001-<0.001)

0.332(0.206-0.471)
0.95(0.875-0.974)

0.003** (<0.001-0.012)
0.853(0.542-0.935)

FP

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

3.716 (0.932-11.108) 0.336(0.011-0.818)

Note: Body mass is log10 transformed. Asterisks indicate mean p-values that are statistically significant: one asterisk (*) indicates a mean p-value that
is below or equal to 0.05; two asterisks (**) indicate a mean p-value that is below or equal to 0.01; three asterisks (***) indicate a mean p-value that is

below or equal to 0.001.
Abbreviations: BM, body mass; FP, femoral posture; LS, lifestyle.
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FIGURE 4 Posterior probabilities of femoral posture at nodes
of interest (bottom to top: Archosauria; Mammalia; Theria) derived

from ancestral state reconstruction with our sample of extant taxa.

pass 50% of correct classification (57% and 50%, respectively).
“Semi-erect” species are always misclassified. We were still able to
make postural inferences for the hypothetical ancestral taxa. All hy-
pothetical ancestors are always inferred to be sprawlers (Figure 5),
regardless of lambda value (0.25<lambda<0.28; mean=0.27),
and even with the best PFDA model. All posterior probabilities
for each ancestral taxon are available as supporting information
(Appendix S2: Tables S9 and S10).

4 | DISCUSSION

4.1 | Femoral microanatomy vs. phylogeny, body
mass and posture

BS/TV, Tb.Th, Th.Sp and Conn.D are the main contributors to the
first axis of the PCA. Crouched and erect species are better sepa-
rated along this axis, with crouched and erect taxa having lower and
higher values, respectively (Figure 3). However, PGLS do not reveal
a significant association between these microanatomical parameters
and femoral posture (Table 3). This may be due to the fact that PCA
does not take phylogeny into account, unlike PGLS. Indeed, femoral
posture carries a strong phylogenetic signal (Table 2). Furthermore,
all these parameters are significantly associated with body mass
(Table 3). Indeed, the trabecular thickness (Th.Th) and the trabecular
spacing (Th.Sp) increase with body mass, while the bone area per
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TABLE 4 Success rate of the PFDA inference model of femoral posture assessed by cross-validation.

PFDA model formula Mean model RCC (min-max)

FP~2 4 B 4 Conn.D 0.618 (0.591-0.645)

Femoral posture Mean group RCC (min-max)

Crouched 0.731(0.705-0.773)
Erect 0.567 (0.5-0.639)
Sprawling 0.495 (0.4-0.5)
Semi-erect 0(0-0)

Abbreviations: FP, femoral posture; PFDA, phylogenetic flexible discriminant analysis; RCC, rate of correct classification.

Archosauria
31 Femoral posture
Crouched
o Mammalia ® Erect
;/_: 2] ® Sprawling
A A
g A Theria & - 4
® A ® Semi-erect
c A ° *
€ A A o AlaA S
Ty ok AL o3 i < A Sprawling (inferred)
o - X
2 o A4 w*% g .
e O ‘ :{. L[] ;.‘}.a ¢ ‘ Taxon
L L}
e Mammal
04 A Reptile
-2 0 2

Discriminant axis 1

FIGURE 5 Discrimination of femoral posture within our amniote sample, as shown by phylogenetic flexible discriminant analysis (PFDA)

on the microanatomical parameters with tree 1.

unit volume (BS/TV), the number of trabeculae in the bone cube
(Conn.D) and the degree of anisotropy (DA) decrease (Appendix S2:
Table S5). Previous studies identified similar scaling patterns within
mammals and birds (Doube et al., 2011), but also reptiles (Plasse
etal., 2019). Here we show that these allometric relationships appear
to hold when considering amniotes as a whole. However, this is not
surprising since we partially reused data from Doube et al. (2011).
Thus, the postural patterns revealed by PCA could be spurious and
reflect both the effect of the phylogeny and body mass. Therefore,
the microanatomical parameters measured in 3D at the femoral
head may not be appropriate proxies to characterize femoral pos-
ture once phylogeny and body mass are taken into account, at least
with our sample and methods. This may be related to the location
where the bone cubes were extracted, that is, the centre of the fem-
oral head. Indeed, several studies of primates have shown that the
core of an epiphysis carries less functional signal than the peripheral
(subchondral) areas (Cazenave et al., 2021; Georgiou et al., 2020).
This could also be related to the presence of a secondary ossifica-
tion centre in the femoral head of mammals and lepidosaurs (Carter
et al., 1998; Xie et al., 2020). It would be interesting in the future to
test for a functional signal with bone volumes from other locations
(e.g. metaphysis). In addition, it should be mentioned that trabecu-
lar bone in the proximal femur depends, among other things, on the
loading conditions at the hip. These vary according to locomotion or
posture, but can also vary between taxa within the same postural

group (Christen et al., 2014; Ryan & Ketcham, 2005). How this may
affect our results requires further investigation.

Principal component analysis reveals that Conn.D and BS/TV are
positively correlated, which is not surprising. Indeed, if the number
of trabeculae increases, this logically leads to an increase in bone
surface. Conn.D and BS/TV are also both negatively correlated with
Th.Sp, which is not surprising either. Indeed, if the number of tra-
beculae increases, the trabecular spacing mechanically decreases.
The positive correlation between BV/TV and DA is more difficult
to explain. However, this apparent correlation might be an artefact.
Indeed, if the cube extracted from the femoral head contains little
bone, it becomes more difficult to detect a potential trabecular ori-
entation (Plasse et al., 2019).

4.2 | Palaeobiological implications

A sprawling posture is the most probable at the Archosauria node
based on ancestral state reconstruction (Figure 4; Appendix S2:
Table Sé). This is consistent with the reconstructed values of the
microanatomical parameters at this node that place the ancestor
of archosaurs close to Caiman crocodilus (Appendix S2: Table S7),
although there is no significant association between the microana-
tomical parameters and femoral posture (Table 3). However, the
ancestor of crocodylians and birds lived in the Triassic, a period
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of postural transition for archosaurs (Cuff et al., 2022; Kubo &
Benton, 2009; Sereno, 1991; Sullivan, 2015). Archosauria may
have exhibited a mosaic of characters, as is the case for ear-
lier Triassic taxa, such as Euparkeria capensis, an archosauriform
(Demuth et al., 2020), and as posterior probabilities seem to sug-
gest (a crouched posture is the second most probable posture at
this node; see Appendix S2: Figure S4 and Table Sé). A key issue is
that we reconstructed ancestral states and values from extant and
recently extinct species only. Crocodylians and birds in particular
are very different from what the ancestral archosaur probably was
like. Thus, our results may be partially subject to a “pull of the re-
cent” bias. However, the inclusion of fossils with “known” posture
in the sample could help to alleviate this issue. Indeed, the posture
of some extinct species can be reliably estimated, or “known” well
enough (i.e. general consensus in the field, based on good evidence,
even if indirect), to accept them as useful “facts” (data) for further
analyses. For example, we now “know” that non-avian theropod di-
nosaurs had more erect limbs than birds (Gatesy, 1991). Similarly,
we “know” that sauropod dinosaurs had columnar limbs to re-
duce weight constraints (Hutchinson, 2021). Including such taxa
in the models would certainly help to refine the reconstructions.
The most probable posture at the Mammalia and Theria nodes is
crouched, implying that more parasagittal limbs appeared early in
the evolution of synapsids, with the first mammals and potentially
before. However, these results are in complete contradiction with
the maximum likelihood estimates of the microanatomical param-
eters at these nodes. The latter place the bone microarchitecture
of the ancestor of mammals closer to Tiliqua scincoides and the an-
cestor of therians closer to Basiliscus basiliscus, two squamates with
sprawling limbs (Appendix S2: Table S7). In addition to supporting a
late origin of parasagittal gait, this implies a potential convergence
in the acquisition of more parasagittal femora. However, insofar as
we were unable to demonstrate an association between the bone
microarchitecture and femoral posture with our amniote sample,
we consider that functional hypotheses based on the maximum
likelihood estimates of the microanatomical parameters are less
reliable than nodal estimates based on observed femoral posture
of extant taxa. Be that as it may, it is interesting to compare our
findings with previous hypotheses. Among the proponents of an
early origin of parasagittalism, Sereno (2006), on the basis of mor-
phological evidence, argued that multituberculates had parasagit-
tal forelimbs and that parasagittal gait evolved once in mammals,
sometime before the Late Jurassic. Pridmore (1985), following
Jenkins and Parrington (1976), who pointed out the similarities
between the postcranial skeletons of Late Triassic mammaliaforms
and later therian mammals, argued that parasagittal gait had an
Early Triassic origin. Among the supporters of the late parasagit-
tal gait hypothesis, Gambaryan and Kielan-Jaworowska (1997), and
later Kielan-Jaworowska and Hurum (2006), provided morphologi-
cal and ichnological arguments for a therian origin of parasagittal
gait. This needs to be studied in more detail. Hopefully, further re-
search, building on recent biomechanical work (e.g. Brocklehurst
et al., 2022), will shed light on this issue.

JournaL of Evolutionary Biology o

4.3 | Inference model

Phylogenetic flexible discriminant analysis does not perform better
than PCA in discriminating between femoral postures. The best com-
bination of microanatomical parameters achieved by cross-validation
yields a model rate of correct classification of about 65%, but very
contrasting results between the postural categories (Appendix S2:
Table S8). The main source of error is that some erect species are
modelled as crouched. The model presented in the Results section
reduces this problem somewhat, but an imbalance persists (Table 4).
A larger sample size could probably reduce the residual error fur-
ther, but it also appears that the postural signal is weak for the 3D
microanatomical parameters. Postural inferences with hypotheti-
cal ancestral taxa are consistent with the reconstructed ancestral
microanatomical parameters and support a late postural transition
in mammals. However, these results should be viewed with caution
with regard to the low robustness of the model, which is most likely
due to the lack of association between the microanatomical param-

eters and femoral posture (Table 3).

5 | CONCLUSIONS

None of the microanatomical parameters measured on 3D bone
cubes extracted from the femoral head of a sample of amniote taxa,
that is, the bone volume fraction (BV/TV), the bone surface area
(BS/TV), the mean trabecular thickness (Tbh.Th), the mean trabecular
spacing (Tb.Sp), the connectivity density (Conn.D) and the degree
of anisotropy (DA), are significantly associated with femoral pos-
ture, nor with lifestyle, as shown by phylogenetic generalized least
squares. On the contrary, we show that all microanatomical param-
eters, except BV/TV, are significantly associated with body mass. In
addition, we identify that femoral posture carries a phylogenetic sig-
nal. A different sampling area for the bone cubes, for example in the
metaphysis, which potentially carries a stronger functional signal,
could lead to different results. It would also be interesting to apply
the method to other bones of the appendicular skeleton, such as the
humerus, to see if a similar pattern is found.

Reconstruction of the ancestral femoral posture based on nodal
reconstructions and a sample of extant taxa suggests that the most
probable posture at the Archosauria node is sprawling, consistently
with the maximum likelihood estimates of the microanatomical pa-
rameters at this node. However, the reconstructions could suffer
from a “pull of the recent” bias, as crocodylians and birds differ from
the probable ancestral archosaurian condition. A crouched posture
is the most likely posture at the Mammalia and Theria nodes, im-
plying an early postural transition in Synapsida, towards the Late
Triassic/Early Jurassic. However, the reconstructed ancestral mi-
croanatomical parameters give opposite results, except for the
Archosauria node. Indeed, the reconstructed parameters indicate
a more sprawling posture at the Mammalia and Theria nodes, sug-
gesting a late postural transition. The addition of new taxa to the
reconstructions, particularly extinct species with “known” posture
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that are anatomically closer to the ancestral condition of archosaurs,
mammals and therians, could refine the inferences at these nodes.
Overall, the results obtained from the maximum likelihood estimates
of the microanatomical parameters are less reliable than those ob-
tained from the observed femoral posture, as we fail to find a sig-
nificant association between the microanatomical parameters and
femoral posture in our sample.

Phylogenetic flexible discriminant analysis based on the micro-
anatomical parameters does not perform better than PCA in separat-
ing the femoral postures. The rate of correct classification is highly
unbalanced between postural categories. Adding taxa to the sample
might help to overcome this problem, but considering the PFDA and
PCA results together, it appears that, in amniotes, the trabecular ar-
chitecture of the femoral articular head does not carry a particularly
strong postural signal, at least with our sample. Nevertheless, we
tentatively infer the posture of the hypothetical ancestor of archo-
saurs, mammals and therians. The model infers a sprawling posture
in all cases and thus supports a late postural transition in Synapsida.
However, these results should be taken with caution given the lack
of a statistically-validated relationship between the microanatomical
data and femoral posture.

The growing interest in postural issues in extant and extinct an-
imals in recent decades has improved our knowledge of vertebrate
evolution and augurs exciting future discoveries. In this paper, we
show that, despite the weak association between femoral posture
and the trabecular architecture of the femoral head in amniotes, an-
cestral state reconstruction methods applied to postural problems
are promising. They deserve a more prominent place in the study
of postural transitions, especially in the case of Mesozoic amniotes.
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