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Abstract
Motivation: Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC), which has a strain- or lineage-based
clonal population structure. The evolution of drug-resistance in the MTBC poses a threat to successful treatment and eradication of TB. Machine
learning approaches are being increasingly adopted to predict drug-resistance and characterize underlying mutations from whole genome
sequences. However, such approaches may not generalize well in clinical practice due to confounding from the population structure of the
MTBC.

Results: To investigate how population structure affects machine learning prediction, we compared three different approaches to reduce lineage
dependency in random forest (RF) models, including stratification, feature selection, and feature weighted models. All RF models achieved
moderate-high performance (area under the ROC curve range: 0.60–0.98). First-line drugs had higher performance than second-line drugs, but it
varied depending on the lineages in the training dataset. Lineage-specific models generally had higher sensitivity than global models which may
be underpinned by strain-specific drug-resistance mutations or sampling effects. The application of feature weights and feature selection
approaches reduced lineage dependency in the model and had comparable performance to unweighted RF models.

Availability and implementation: https://github.com/NinaMercedes/RF_lineages.

1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis,
has a significant impact on public health worldwide, resulting
in 1.6 million deaths in 2021 alone (World Health
Organization, 2022). The primary treatment of TB is to use a
combination of first-line drugs including rifampicin (RIF), iso-
niazid (INH), ethambutol (EMB), and pyrazinamide (PZA).
However, multi-drug resistant TB (MDR-TB) (resistance to
RIF and INH) has developed and second-line therapies are in-
creasingly required for effective treatment of TB (World
Health Organization, 2022). Previously, second-line treat-
ments included fluoroquinolones [ofloxacin (OFL), moxi-
floxacin (MOX), levofloxacin (LEV)], second-line injectables
[amikacin (AMI), capreomycin (CAP), kanamycin (KAN),
streptomycin (STM)], and other drugs [cycloserine (CYS), eth-
ionamide (ETD), para-aminosalicylic acid (PAS)] (WHO
2022). More recently, WHO updated the treatment guidelines
due to the need for shorter and effective treatments for drug-
susceptible and MDR-TB (WHO 2021). Recent changes to
treatment guidelines and drug-resistant phenotype classification

emphasizes the ongoing development of the drug-resistant TB
problem. Therefore, it is important to gain insight into the bio-
logical drivers of resistance with a view to improve TB treat-
ment and diagnosis.

Machine learning (ML) algorithms offer a new method to
address the drug-resistant TB problem by simultaneously pre-
dicting drug-resistant phenotypes and exploring the genomic
variation that underpins drug-resistance (Niehaus et al. 2014,
Yang et al. 2018, Kouchaki et al. 2019). Numerous tradi-
tional ML approaches have been applied to predict drug-
resistance such as logistic regression, decision trees, random
forests (RFs), and gradient boosted trees (Niehaus et al. 2014,
Yang et al. 2018, Deelder et al. 2019, Kouchaki et al. 2019,
Libiseller-Egger et al. 2020, Kouchaki et al. 2020). Although
such models have achieved moderate-high performance, their
application in clinical settings is hindered due to lack of
interpretability.

It is suggested that the ideal solution would be for ML algo-
rithms to predict resistance using only mutations that are
causative of drug-resistance. This would facilitate the
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surveillance of drug-resistance mutations. However, most
published models rely on non-causative mutations to boost
the predictive performance of the model (Deelder et al. 2019).
For example, co-occurrent resistant mutations that cause re-
sistance to a different drug are often assigned high importance
and contribute to improved performance for some drugs
(Deelder et al. 2019). Likewise, it is hypothesized that ML
prediction is confounded by population structure, contribut-
ing to high importance of lineage-specific mutations across
models (Deelder et al. 2019, Yang et al. 2019, Libiseller-
Egger et al. 2020). Even so, the mechanisms that underly
drug-resistance are complex and can differ between lineages,
indicating that some lineage-specific mutations may play a
role in drug-resistance (Wu et al. 2013, Oppong et al. 2019).
Therefore, it is important to determine how population struc-
ture affects model performance and interpretability.

The M.tuberculosis complex (MTBC) is a group of geneti-
cally related Mycobacterium species that are responsible for
causing TB. The MTBC has a highly clonal population struc-
ture with no ongoing horizontal gene transfer and low recom-
bination rate (Hershberg et al. 2008, Gagneux 2018,
Ngabonziza et al. 2020). It is comprised of several human and
animal adapted lineages, including M.tuberculosis sensu
stricto (Lineages 1–4 and 7), Mycobacterium var. africanum
(Lineages 5–6), and at least nine zoonotic lineages (Coll et al.
2014, Napier et al. 2020). Additionally, new Lineages 8 and 9
have recently been described (Napier et al. 2020, Coscolla
et al. 2021). Whilst Lineages 2 (East Asian) and 4 (Euro-
American) are more widespread, the remaining lineages are
geographically isolated, suggesting strains have co-evolved
with human populations (Hershberg et al. 2008, Gagneux
2012, 2018). Population structure is of particular importance
in the context of resistance prediction for several reasons.
Firstly, most ML models assume that samples are independent
which may be invalid due to the ancestral relationships be-
tween isolates. This can lead to spurious genotype–phenotype
associations because of confounding. In addition, it has previ-
ously been shown that the performance of resistance predic-
tion can vary across countries and lineages (Mahé et al. 2019,
World Health, Organization 2018). This variation may be
due to the genetic background of MTBC lineages which can
vary in transmission, virulence, and drug-resistance (Niemann
et al. 2010, Krishnan et al. 2011, Karmakar et al. 2019,
Oppong et al. 2019). Poor performance can also stem from a
sampling effect whereby more prevalent lineages make up
most existing datasets, leading to a lack of knowledge of
drug-resistance mutations in under-sampled lineages and
poor generalization of predictive models. Consequently, it is
important to explore how lineage dependency affects the pre-
diction of resistant phenotypes across the MTBC.

Confounding from population structure has yet to be fully
addressed in ML prediction. Previous studies have applied a
weight to each sample according to its clade size and strain
prevalence (Lees et al. 2020, Nguyen et al. 2020). However,
in some circumstances, this led to reduced model performance
and the effectiveness was dependent on the complexity of the
population structure. In contrast, population structure has
been adjusted for in genome wide association studies (GWAS)
using a variety of methods, including the use of kinship matri-
ces in linear mixed models, covariates derived from principal
component analysis (PCA), multidimensional scaling on pair-
wise distances, and de Bruijn graphs (Zhou and Stephens
2012, Earle et al. 2016, Phelan et al. 2016, Coll et al. 2018,

Jaillard et al. 2018, Lees et al. 2018, Oppong et al. 2019).
Furthermore, convergence analysis tests have been developed
to identify homoplastic mutations enriched in resistant
branches across a phylogenetic tree (Farhat et al. 2013,
Phelan et al. 2016, Collins and Didelot 2018). Such analyses
inherently account for confounding from clonal population
structure and have been essential for improving our under-
standing of the mechanisms that underpin drug-resistance in
the MTBC. In contrast, there is no standard approach to ac-
count for population structure in ML models. It is important
to address this limitation for ML models to generalize and
perform optimally across MTBC lineages.

Given the existing limitations previously reported for ‘off-
the-shelf’ ML algorithms, we explore the effects of reducing
lineage dependency using RF models. The RF model is a non-
parametric tree ensemble algorithm that combines the output
of multiple decision trees to make a prediction (Breiman
2001). Notably, RF models are favoured as they are interpret-
able and can capture feature interactions (Nembrini et al.
2018). The strong phylogeographical associations exhibited
by the MTBC may indicate the need for models that predict
resistance for each lineage separately. Therefore, we first mea-
sured how RF models perform using stratified datasets that
are comprised of the most prevalent lineages of the MTBC
(Lineages 2 and 4) in comparison to a global version based on
all lineages. Alternatively, ML methods that take advantage
of evolutionary convergence would intrinsically account for
population structure and prioritize mutations that have
evolved independently multiple times. Consequently, we de-
vised a method to weight features according to their homo-
plasy distribution to indicate the probability that it will be
used as a split-variable in the model. We hypothesized that
the feature weighted approach can improve the robustness of
resistance prediction without jeopardizing the performance of
the model. This insight has important implications for geno-
type–phenotype predictions carried out across a wide range of
disciplines that are frequently confounded by population
structure, including infectious disease and genomic medicine.

2 Materials and methods
2.1 Whole genome sequencing data

A dataset that was curated prior to this study was used for the
analysis (Coll et al. 2015, Phelan et al. 2019). The dataset is
comprised of whole genome sequences (WGS) and drug sus-
ceptibility test (DST) data for 18 396 MTBC isolates and was
collated from previously published studies. WGS was per-
formed using Illumina sequencing and were processed using
methods that have previously been described (Coll et al.
2015, Phelan et al. 2019). In brief, raw reads were aligned to
the H37Rv reference genome (Genbank accession NC_00
0962.3) using BWA mem algorithm and variants (single-nu-
cleotide polymorphisms [SNPs]; insertions/deletions (indels)]
were called using SAMtools/BCFtools and GATK software
(McKenna et al. 2010, Li 2011). Missing genotypes were
assigned if the total depth of coverage was 20 or at least 75%
of the total coverage was not reported for by one nucleotide.
Samples or variant sites were removed if greater than 10% of
genotypes were assigned as missing. Missing genotypes were
infrequent and assumed to be missing at random. Missing
genotypes were assigned using a phylogenetic-based imputa-
tion method. Allele frequency was calculated using VCFtools
(v1.9) (Danecek et al. 2011).
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2.2 DST data

Binary DST data were obtained using WHO recommended pro-
tocols from clinical isolates that were retrieved from individual
patients. For our analysis, susceptibility to 13 drugs including
first-line drugs (INH, RIF, EMB, PZA), fluoroquinolones (OFL,
MOX), aminoglycosides (AMI, CAP, KAN, STM), and other
drugs (CYS, ETD, PAS) was considered. In addition, MDR was
also predicted for comparison and was defined as resistance to
both INH and RIF. DST data for each individual drug were not
available for all isolates and there were varying degrees of com-
pleteness across all drugs. Therefore, samples with missing phe-
notypes for each drug were removed per analysis.

2.3 Training and testing datasets

The global TB dataset (n¼ 18 396) was split into training and
testing datasets which were used to train and test the perfor-
mance of the RF model, respectively. As several lineages are
represented in the dataset, some of which are known to con-
tain lineage-specific drug-resistance mutations, a stratified
sampling approach was taken to ensure the training and test-
ing datasets for the global model contained equal proportions
of resistant and susceptible isolates derived from each lineage
across all 14 phenotypes. The majority (80%) of the data was
used to train the algorithm and the remaining subset (20%)
was used for testing purposes. We also included combined
and separate training and testing datasets for Lineages 2 and
4 to assess how RF models perform over individual lineages.

2.4 Random forest training and predictive

performance

All RF models were implemented using the Ranger package in
R and used to predict binary DST phenotypes from genome
variants (Wright and Ziegler 2017). Methods to account for
lineage dependency were compared (Supplementary Table
SA). Model hyperparameters, such as split rule were opti-
mized using 5-fold cross-validation using the grid search ap-
proach available in the caret package in R (Kuhn 2008).
Default settings were used for mtry (square root of number of
features), and minimum node size (1) as preliminary analysis
had shown that they were optimal for classification.
Additionally, we used 1000 trees (num.trees) and a maximum
depth of 10 (max.depth) consistent with previous analyses
(Libiseller-Egger et al. 2020). To address imbalances in the
number of susceptible and resistant isolates, resistant and sus-
ceptible phenotypes were weighted inversely proportional to
their respective frequencies (weights summed to one).

Three different strategies to account for lineage-specific var-
iants were used: (i) stratified analysis applied to global, com-
bined (Lineages 2 and 4) and lineage-specific (Lineage 2 or 4)
data; (ii) feature selection model: excluding lineage-specific
variants (score<2); and (iii) feature weighted model. The
split.select.weights option implemented by Ranger software
was used to weight features in the model, as demonstrated by
a previous study (Oskooei et al. 2019). This provides a proba-
bility that the feature will be used for splitting in the RF
model. The overall predictive performance was assessed using
area under the ROC curve (AUC-ROC), Sensitivity,
Specificity and F1 score. The framework used to generate
these results is summarized in Supplementary SB.

2.5 Population structure and feature weight

calculation

Two methods were used to infer the population structure of
the global dataset. Firstly, phylogenetic trees were obtained
from a genome-wide SNP alignment using FastTree (v2.1
double precision) software with a Generalized Time
Reversible (GTR) substitution model. Branch lengths were
rescaled to compute a Gamma20-based likelihood (Price et al.
2010). SNPs in hypervariable regions, including PE/PPE
genes, were excluded from the alignment. Phylogenetic trees
for training and testing datasets were built independently and
rooted on an Mycobacterium canetti isolate. Trees were pre-
processed using the Ape package in R (v3.6.1) (Paradis and
Schliep 2019). After pre-processing the phylogenetic tree of
the training dataset, ancestral states were reconstructed using
maximum likelihood and parsimony methods in the
Phangorn package (Schliep 2011). Results between parsimony
and maximum likelihood methods were comparable and all
following results were obtained using the parsimony ap-
proach. The site-wise parsimony score for each variant was
estimated by Fitch’s parsimony algorithm using the Phangorn
package in R (Schliep 2011). Parsimony scores were defined
as the minimum number of state changes that are required to
explain the genotypes observed at the tips of the tree. In the
feature weighted models, normalized parsimony scores were
used to weight features in the RF model. Additionally, popu-
lation structure of sub-lineages was also inferred by PCA us-
ing PCAtools (v3.15).

2.6 Feature selection

Variants (SNPs and indels) in 29 candidate genes encoded in a
binary format were used as features in the analysis. Candidate
genes were selected in line with the TB-Profiler database, a
mutation catalogue that has undergone expert curation
(Supplementary SC) (Phelan et al. 2019). This includes var-
iants that are listed in the WHO drug-resistance mutation cat-
alogue for TB (Walker et al. 2022). For the purpose of
comparison, an additional feature selection method was used
whereby features with a parsimony score of <2 were removed
from the dataset. Such features would otherwise have a
weight of 0 in the weighted model. Removed features were
also compared to existing MTBC barcodes that contain
lineage-specific variants to ensure that all lineage defining
mutations were removed (Coll et al. 2014, Napier et al. 2020,
Freschi et al. 2021). This removal was to assess the perfor-
mance, interpretability, and robustness of a feature weighted
model in comparison to this traditional feature selection
method [unweighted RF (parsimony score <2)] where
lineage-specific variants are removed.

2.7 Ranking feature importance and feature

interactions

Feature importance was assessed using Gini importance due
to its superiority in capturing interactions between features
when compared to permutation importance (Nembrini et al.
2018). To establish a threshold for the ‘most important’ fea-
tures in the model, the analysis was rerun, and features were
recurrently eliminated until the maximum AUC-ROC was
reached. Variants were converted to HGVS format using
SNPEff software (v4.3) and compared to M.tuberculosis
H37Rv genome to infer variant functional class and effects
(Danecek et al. 2011). All features were compared to the TB-
profiler database and literature, as well as a list of lineage-
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specific variants to classify them as either known drug-
resistance mutation or co-occurring mutation (causes resis-
tance to another drug) (Phelan et al. 2019). Variants were
also assigned as ‘lineage’ according to their phylogenetic dis-
tribution in the training dataset. This was to account for line-
age effects that might be observed where a variant is highly
prevalent in one lineage but observed rarely in other lineages
which may be indicative of confounding. Variants were con-
sidered as putative novel drug-resistance if they were included
in the ‘most important’ features in the model, >90% samples
that contain the variant were resistant, and in a known drug-
resistance gene.

Feature interactions were also explored. The occurrence of
parent–child node interactions was summed up across 1000
trees in the RF. The most frequent interactions (top 1%) were
identified using frequency graphs. Interactions were classified
in a similar manner to features, as described above. For exam-
ple, if the parent node was a known drug-resistance variant
and the child node was lineage-specific, the interaction would
be labelled as ‘Known: Lineage’. Interactions between drug-
resistance mutations and compensatory mutations were also
examined.

3 Results
3.1 Genomic and phenotypic data

WGS were available for 18 396 M.tuberculosis isolates. Most
isolates belong to Lineages 2 (N¼4605, 25.0%) and 4
(N¼ 8875, 48.2%), whilst fewer isolates represented the

remaining lineages. Most isolates were pan-susceptible
(N¼ 10 976, 59.7%), but a considerable proportion were RIF-
resistant (N¼ 5403, 29.9%) and MDR (N¼ 4608, 25.1%).
Phenotypic data were most complete for first-line drugs RIF
(N¼ 18 087, 98%), INH (N¼ 17 895, 97.0%), EMB
(N¼ 16576, 90.0%), and PZA (N¼ 13248, 72.0%). However,
data were limited for most second-line drugs, especially for PAS
and CYS (<10%). Phylogenetic analysis of the training dataset
revealed isolates cluster according to lineage (Fig. 1). Resistant
phenotypes were unevenly distributed throughout lineages
(Supplementary SD). A larger percentage of Lineage 2 (60.3%)
isolates were MDR in comparison to Lineage 4 (22.32%)
(Supplementary SD). PCA also revealed isolates cluster accord-
ing to lineage and sub-lineage and greater diversity was observed
for Lineage 4 (Supplementary SE).

3.2 Data predictive performance of global,

combined, and lineage-specific models

We first assessed the effectiveness of stratification for dealing
with lineage dependency by comparing the AUC-ROC, sensi-
tivity, and specificity of the RF models. Overall, the predictive
performance of the RF model varied across the global and
lineage-specific models for each drug (Supplementary SD). As
observed in previous studies, the AUC-ROC was generally
higher for first-line (>0.85) than second-line drugs. AUC-
ROC was especially limited for drugs with fewer samples, in-
cluding ETD [Global AUC-ROC¼0.79 (0.77–0.81)], CYS
[Global AUC-ROC¼ 0.78 (0.72–0.84)], and PAS [Global
AUC-ROC¼ 0.71 (0.64–0.78)]. The optimal performance of

Figure 1. Phylogenetic analysis of the training dataset annotated with corresponding lineage and drug-resistant phenotype. The training dataset was

comprised of 14 724 MTBC isolates that belong to Lineages 1–7 and zoonotic species (inner ring). The outer ring shows the composite drug-resistant

phenotypes which are shaded according to increasing severity of resistance, including pan-susceptible, mono-resistant, MDR, pre-XDR, and other.
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RF models differed between drugs. The AUC-ROC for global
and combined datasets (Lineages 2 and 4) were comparable
(Fig. 2). This was unsurprising given that the global dataset is
mostly comprised of isolates from Lineages 2 and 4. For AMI
[Global AUC-ROC¼ 0.91 (0.89–0.93)] and CAP [Global
AUC-ROC¼0.89 (0.87–0.91)], the global model displayed
the highest AUC-ROC (Fig. 2). In contrast, there was higher
AUC-ROC for Lineage 2 (INH, STM, CYS and PAS) and
Lineage 4 (MDR, EMB, PZA, KAN, and ETD) (Fig. 2).
Global and lineage-specific RF models performed similarly
for RIF, OFL, and MOX (Supplementary SD). These results
indicated that performance across drugs can vary depending
on the strain diversity within the training and testing datasets.

This observation was further exemplified by the variation
in sensitivity observed. Lineage-specific models tended to out-
perform global models in terms of sensitivity (Supplementary
SD). Highest sensitivity was observed in the Lineage 2 specific
model for MDR [0.89 (0.87–0.90)], RIF [0.88 (0.87–0.89)],
INH [0.85 (0.84–0.87)], MOX [0.78 (0.72–0.83)], STM
[0.87 (0.85–0.89)], and PAS [0.40 (0.28–0.54)]. The higher
sensitivity may be driven in part by the larger number of resis-
tant samples in Lineage 2 available for these drugs
(Supplementary SD). A larger sample size may include a
higher number of known drug-resistance mutations that can
drive improvements in sensitivity. Meanwhile, highest sensi-
tivity was reported for Lineage 4 in PZA [0.87 (0.84–0.89)],
KAN [0.84 (0.79–0.88)], CYS [0.52 (0.32–0.72)], and ETD
[0.70 (0.63–0.75)]. Specificity was generally high across all
models, with a slight trade-off with sensitivity (Supplementary
SD). Collectively, this indicates that the performance of RF
model prediction is highly dependent on the lineages and
drug-resistant phenotypes represented in the dataset.

3.3 Identification of known and putative

lineage-specific resistant mutations

To identify what was driving the variation in performance,
we measured the feature importance across lineage-specific,

combined, and global models (Supplementary SF). Features
were classified as a known drug-resistance mechanism if they
had previously been incorporated in the TB-Profiler database
(Phelan et al. 2019). In addition, mutations were also labelled
as having ‘co-occurring’ or ‘lineage’ effects. The feature im-
portance threshold differed between models meaning that the
optimal performance was achieved using a varying number of
mutations (Supplementary SF). Despite undergoing stratifica-
tion, high importance was still assigned to variants with line-
age effects (Supplementary SF). This highlights that
confounding from population structure is a deep-rooted issue
and that confounding occurs at the sub-lineage level. This was
especially noticeable for drugs with limited phenotype data in-
cluding CYS, ETD, and PAS (Supplementary SF). The number
of known drug-resistance mutations identified by lineage-
specific and global models also varied. Lineage-specific
models were able to capture drug-resistance mutations that
are restricted to single lineages. For example, RF models
trained on Lineage 2 isolates assigned high importance to
known drug-resistance mutations in ethA, including
Ala381Pro and 1010_1010del that are found exclusively in
Lineages 2.2.2 and 2.2.1, respectively (Supplementary SG).
We also report variants with lineage-specific associations with
drug-resistance that have yet to be described for EMB (embA
Ala576Thr, Lineage 4.2.2.1) and ETD (ethR 579G>C,
Lineage 4.3.4.2) (Supplementary SG). However, their role in
drug-resistance cannot be fully established based on the
outcome of ML models.

3.4 Performance of unweighted and feature

weighted models

Moreover, the feature selection and feature weighted
approaches had better or equivalent AUC in comparison to
unweighted RF models across all first-line drugs
(Supplementary SH). Using either the feature selection ap-
proach or feature weighting led to increased or similar sensi-
tivity across all drugs (Fig. 3B). For half of the resistant

Figure 2. AUC-ROC of lineage-specific, combined, and global RF models predicting 14 drug-resistant phenotypes. AUC-ROC for each drug-resistant

phenotype is shown. Bars are filled according to lineages included in the analysis. Error bars show 95% confidence intervals for each prediction.
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phenotypes, higher sensitivity was achieved using parsimony
score to weight features in the model, including MDR [0.93
(0.92–0.94)], RIF [0.93 (0.92–0.94)], INH [0.87 (0.86–
0.87)], EMB [0.91 (0.89–0.92)], KAN [0.83 (0.79–0.86)]
(Fig. 3, Supplementary SH). In contrast, the feature selection
approach had higher sensitivity for OFL [0.76 (0.72–0.79)],
MOX [0.78 (0.73–0.83)], CAP [0.71 (0.66–0.76)], and ETD
[0.43 (0.32–0.54)]. This indicated that reducing lineage de-
pendency may not necessarily lead to weaker performance of
the global model. Additionally, the performance differed be-
tween the choice of approach used to account for lineage. The
feature selection approach needs to utilize information from
existing knowledge about lineage-specific variants and may
miss variants that are not yet defined. The feature weighting
approach utilizes all available information from the data and
accounts for unknown lineage-specific variants and biases in
the distribution of mutations across the phylogeny (Fig. 3).
Regardless of the approach used, there was low sensitivity for
CYS, ETD and PAS (Supplementary SH).

3.5 Feature importance and interactions of feature

weighted models

We assessed the impact of reducing lineage dependency on
the model further by evaluating the feature importance and
most frequent interactions in the model. The importance of
variants that contribute to lineage dependency in the model
was mostly reduced using the feature weighted model
(Supplementary SI). Across most drugs, the feature selection
approach also reduced the importance of clade-specific var-
iants but was less effective when compared to the feature
weighted model (Supplementary SI). In some cases, this was
advantageous as drug-resistance mutations belonging to a sin-
gle lineage were ranked highly. This list included a frameshift
mutation in tlyA 751_752insTG (Lineage 4.3.4.2)
(Supplementary SG). The robustness of drug-resistance pre-
diction was analysed by comparing the most frequent interac-
tions in the Unweighted model and Feature Weighted model.
The feature weighting method effectively removed all frequent

lineage interactions across all drugs (Fig. 4, Supplementary
SJ). Within the top 1% of interactions, the number of interac-
tions between known drug-resistance mutations increased us-
ing the feature weighted model for the MDR phenotype
(Fig. 4). Whilst the feature weighted RF (FW-RF) approach
increased the interactions between known drug-resistance
mutations, both models were unable to capture interactions
between all drug-resistance mutations. Reducing lineage de-
pendency also led to increased reliance on co-occurring muta-
tions associated with resistance to RIF, EMB, PZA, ETD,
PAS, and CYS (Supplementary SJ). This is shown further by a
higher frequency of co-occurring interactions in the feature
weighted model. Additionally, no lineage-specific drug-resis-
tance mutations or putative novel drug-resistance mutations
were reported by the feature weighted model.

4 Discussion

Confounding from population structure occurs as a result of
the highly clonal nature of the MTBC phylogeny which has
been driven by asexual reproduction, an absence of horizontal
gene transfer and low levels of recombination (Gagneux
2018). Whilst the effects of confounding from population
structure are widely considered for GWAS, it remains a key
limitation for genotype–phenotype prediction in ML studies.
In this study, we addressed bias in ML prediction of
M.tuberculosis drug-resistant phenotypes that occurs due to
population structure. We developed a novel method, Feature
Weighted Random Forest (FW-RF), to account for lineage de-
pendency in ML prediction and compare it to ad-hoc
approaches, namely stratification and feature selection.

Stratification of the global dataset into lineage-specific
(Lineage 2 and Lineage 4 separately) and combined (Lineages
2 and 4 combined) datasets led to varying performance
depending on lineages and drug-resistant phenotypes repre-
sented in the datasets. This result suggests that resistance to
specific antitubercular agents can vary between lineages.
Intrinsic differences between MTBC sub-lineages have been

Figure 3. Performance of unweighted and feature weighted RF models predicting 14 drug-resistant phenotypes. AUC-ROC (A), Sensitivity (B), and

Specificity (C) for each drug-resistant phenotype is shown. Bars are filled according to feature weight and feature selection method used. Error bars show

95% confidence intervals for prediction. Plots produced using ggplot2 package in R.
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explored. The most notable example being the increased
transmission of the modern Beijing sub-lineage associated
with MDR-TB (Cox et al. 2005, Niemann et al. 2010, Li
et al. 2016, Karmakar et al. 2019).

This insight has been supported further by evidence of
lineage-specific genotypic associations with drug-resistance in
separate and combined analysis for major lineages (Oppong
et al. 2019). Previous analyses have also shown predictions
based on profiling tools and molecular diagnostic tests can
differ between lineages and countries respectively (World
Health, Organization 2018, Mahé et al. 2019). This differ-
ence may stem from an inconsistent diagnostic and treatment
regimen implemented across countries, whereby second-line
treatments and new drugs (bedaquiline and delamanid) are
excluded from essential medicine lists required for basic
healthcare (World Health Organization, 2022). Furthermore,
our study showed that lineage-specific models tended to out-
perform the global and combined models across the drug
panel. This result confirms concerns made by previous studies
that global models may not necessarily perform and general-
ize well in clinical practice (Mahé et al. 2019). Therefore, fu-
ture studies should provide an evaluation of performance for
individual lineages to indicate the general applicability of ML
models. Whilst stratification contributed to improved perfor-
mance, it does not prevent confounding due to the ancestral
relationships between samples occurring at the sub-lineage
level. Stratification was also not possible across all lineages
because of a limited number of samples being available for
the remaining lineages, implying that other approaches are re-
quired to handle population structure.

When comparing our novel FW-RF approach to traditional
feature selection method, we observed that the removal of
lineage-specific mutations, that were defined using predeter-
mined SNP barcodes, may not account for all lineage
dependency in the model and also led to the removal of drug-
resistance mutations found within specific lineages (Coll et al.
2014, Napier et al. 2020, Freschi et al. 2021). Previously

developed barcodes primarily include SNPs and do not in-
clude insertions and deletions, larger structural variants, or
SNPs in known drug-resistance genes (Coll et al. 2014).
Therefore, such variants would have been maintained within
the set of features. The feature selection process also could be
considered too strict due to the complete removal of phyloge-
netic related features.

The FW-RF model uses feature weights to determine the
probability that features will be used as a split variable. The
advantage of this approach is that the number of times muta-
tions have evolved independently is taken into account. This
observation is more consistent with convergent evolution and
selection of drug-resistant mutations. Although the impor-
tance of strain-specific drug-resistance mutations will be low-
ered using this approach, the effect size helps to compensate
for its suppression. This enables us to maintain predictive per-
formance whilst improving the interpretability of the model.
Whilst this study has primarily focused on feature weighting
in the context of RF prediction, feature weights could be ap-
plied to several other algorithms, including support vector
machines, K-nearest neighbour, neural networks, and learn-
ing classifier systems (Urbanowicz and Moore 2015, Chen
and Hao 2017, Huang et al. 2021). Future research should be
carried out to explore feature weighting mechanisms and ex-
pert knowledge discovery in prediction tasks further.

Our study supports outcomes from prior research that have
shown that confounding variables such as lineage and co-
occurring phenotypes boost model performance (Deelder
et al. 2019, Green et al. 2022). We find that despite reducing
lineage dependency using the FW-RF model, the performance
was maintained across most drugs. Whilst this could be due
to greater importance of known drug-resistance mutations, it
may also be caused by confounding from co-occurring resis-
tance to other drugs which could indicate overfitting to the
dataset (Deelder et al. 2022). This emphasizes the importance
of addressing confounding in ML prediction, even though

Figure 4. Most frequent interactions (top 1%) observed across 1000 trees in RF model for MDR TB prediction. (A) Most frequent variant–variant

interactions in the unweighted RF model. (B) Most frequent variant–variant interactions in the weighted model. Genes known to contain MDR mutations

are highlighted. Interactions are classified as a known drug-resistance interaction, co-occurring interaction, and lineage interaction. Interactions were

visualized using shinyCircos (Yu et al., 2018).
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such features may increase performance, to make interpret-
able and robust predictions.

Additionally, we found that variation in performance
across the stratified datasets was underpinned by the repre-
sentation of drug-resistant phenotypes across sub-lineages, as
well as drug-resistance mutations, that have emerged in a sin-
gle lineage. For example, ethA Ala381Pro and 1010_1010del
were identified as important features for predicting ETD resis-
tance in Lineage 2. ETD is a pro-drug activated by the myco-
bacterial monooxygenase EthA. Mutations in ethA prevent
the activation of ETD, some of which have been reported as
lineage-specific (Coll et al. 2018, Alame Emane et al. 2021).
We also report putative novel mutations in ethR (579G>C), a
transcriptional regulator of ethA, as well as embA
(Ala576Thr), which encodes the drug target of EMB, in
Lineage 4. Lineage 4 is considered to have greater strain diver-
sity than Lineage 2 which has facilitated the discovery of
novel drug-resistance mechanisms (Oppong et al. 2019).
Despite this, previous epidemiological and in vitro studies
have suggested that Lineage 2 isolates are at a greater risk of
developing drug-resistance than Lineage 4 (Torres Ortiz et al.
2021). Consequently, it is thought isolates belonging to
Lineage 2 are predisposed to developing resistance due to
their genomic background (Torres Ortiz et al. 2021).
Compensatory mutations, such as those in rpoC, were also
reported as high-ranking features across all models regardless
of lineages represented in the dataset. Compensatory muta-
tions are considered to alleviate fitness costs associated with
drug-resistance and some studies suggest association with
transmission (Casali et al. 2014). There is conflicting evidence
as to whether compensatory mutations vary between strain
types and their role in drug-resistance is not fully understood
(de Vos et al. 2013, Casali et al. 2014, Li et al. 2016, Liu et al.
2018, Merker et al. 2018). This questions whether concen-
trating solely on causal variants overlooks the role that other
mutations play in drug-resistance, including compensatory
and lineage-specific mutations. For example, lineage-specific
mutations may influence the transmission of MDR strains. In
such cases, lineage-specific mutations can directly impact
drug-resistance or have broader implications on bacterial
fitness (Shah et al. 2017). As a whole, this indicates that the
molecular mechanisms that underpin drug-resistance are com-
plex and are dependent on an interplay between genetic back-
ground, epistasis, and fitness (Borrell and Gagneux 2011).

We note that there are several limitations and areas of fur-
ther research that would enhance the outcome of this study.
Firstly, we only consider two major lineages of the MTBC in
lineage-specific models. We also note the limited number of
samples for second-line drugs within these lineages. A larger
number of samples from under-sampled lineages would facili-
tate research into improving current knowledge surrounding
the evolution of drug-resistance in MTBC strains. Secondly,
we recognize the feature weighted model may be biased to-
wards features with higher minor allele frequency. This is also
a known existing limitation of RF models using Gini impor-
tance measures (Wright et al. 2016). This could be improved
by aggregating mutations across loci to take into account
rarer alleles. Drug-resistance mutations are likely to occur
outside of candidate genes and other genomic regions have
been implicated in pre-resistance (Torres Ortiz et al. 2021).
Genome-wide models would promote further discovery and
limit the pre-processing required for ML prediction. Finally,
the role of putative novel drug-resistance mutations require

validation which may be performed using in silico and
in vitro experimentation.

5 Conclusion

Previous studies have suggested that ML performance is in
part driven by lineage dependency due to confounding from
population structure. Evidence presented here confirms that
lineage dependency impacts ML predictive performance and
interpretability. This study investigated methods to tackle
confounding from population structure including stratifica-
tion, feature selection and FW-RF approaches. FW-RF is a
novel approach that is particularly effective at helping us to
obtain clearer interpretations of ML prediction, whilst main-
taining the power to predict-drug-resistance. However, it is
important to consider there may be complex interactions be-
tween mutations to bring about drug-resistant phenotypes.
Overall, ML approaches have widespread applications to ge-
nomic medicine, where genotype-phenotype predictions are
being increasingly utilized to gain insight into genomic drivers
of disease.

Supplementary data

Supplementary data are available at Bioinformatics online.
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