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Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit
significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features –
molecular weight, charge and length – were examined for correlations with activity. Methods: Original
research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until
31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-
effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial
peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001)
with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial
peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability
and bioavailability typically associated with peptidomimetics.
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Antimicrobial peptides (AMPs), also commonly denoted as host-defense peptides, form a fundamental part of
the innate immune response mounted by all higher life forms against pathogenic bacteria, fungi, parasites and
enveloped viruses. In addition, some AMPs exert anticancer cytotoxic effects. Importantly, AMPs may provide a
valuable source of lead compounds for novel antibiotics/potentiators based on their key roles in the innate immune
system in most multicellular organisms [1,2].

The majority of AMPs identified to date can be divided into four main categories based on their secondary
structure: β-sheet, α-helix and extended and loop conformations – with α-helical peptides appearing to be the
most abundant/studied to date. Although these AMPs share several common features (albeit consisting of a limited
number of overall structural motifs), their sequences, activities and targets differ considerably [3]. The mode of action
(MoA) of AMPs is dependent on specific physico-chemical properties, including the sequence, content of certain
amino acids, charge, amphipathicity and overall molecular shape (i.e., secondary structure) [4]. However, the most
common MoA considered and analysed for Gram-negative bacteria is their interaction with the lipopolysaccharide
layer that constitutes a main part of the outer membrane [5]. Measures of permeability of Gram-negative pathogens
are often used to assess the MoA for cationic AMPs [6]. For example, AMPs have been shown to potentiate the
effects of antimicrobial compounds that otherwise exhibit poor or slow uptake in Gram-negative bacteria. This
was demonstrated when the effect of penicillin was monitored in the presence of nisin Z, where the minimum
inhibitory concentration (MIC) was lowered by 155-fold as compared with that of penicillin alone [7].

Although AMPs have the potential to contribute to the fight against antimicrobial resistance, their clinical use
has unfortunately been hampered by a variety of adverse pharmacological properties [8]. Importantly, natural AMPs
are not proteolytically stable and hence are rapidly degraded by endogenous proteases in vivo, which reduces their
bioavailability (due to short half-lives), which makes it difficult to reach and maintain a therapeutically relevant
concentration in vivo [9]. Additionally, there are many more adverse properties that are associated with the clinical use
of AMPs, including concomitant toxic side effects on mammalian cells (e.g., many AMPs give rise to unacceptable
levels of hemolysis) [6].

Nevertheless, in the continuous search for novel antimicrobial drugs, AMPs serve as useful pharmacophores
amenable to structural optimization [10]. Thus, their structures can be manipulated into stable analogues of AMPs
that retain the activity and selectivity of AMPs while displaying improved bioavailability, metabolic stability and
lowered immunogenicity. This field has gained considerable attention in recent years, and numerous research groups
have reported the incorporation of various modified residues into peptide structures, resulting in analogues termed
peptidomimetics [1,8,10–12].

Similar to AMPs, peptidomimetics can also be divided into four main classes, and in this classification pep-
tidomimetics are categorized based on their degree of peptide character [12]. Class A compounds have high similarity
to their parent peptide (limited number of local modifications). Class B compounds contain more pronounced
modifications, which may include non-natural amino acids. Class C compounds have a nonpeptide unnatural
structure, where the backbone of the parent peptide is completely replaced. Class D compounds have the least
similarity to their parent peptide while mimicking the MoA.

The field of peptidomimetics has undergone significant development over the years, and thus the strategies in
peptidomimetic design have matured alongside. Strategies have migrated from localized modifications of AMPs,
such as peptide bond substitution and side chain isosteres, to completely synthetic peptidomimetics based on
rational design [12]. Such design processes involve the development of new backbones and side chains, such as by
incorporating unnatural amino acids, β-amino acids and peptoid residues and constructing hybrid peptidomimetic
structures as well as lipidation (Supplementary Figure 1) [1,10,13].

AMPs and their synthetic analogues (including synthetic peptidomimetics) hold vast potential for the devel-
opment of novel antimicrobial drugs due to their often rapid, membrane-disruptive killing mechanisms (thereby
reducing the risk of resistance development), ease of structural modification and many options for improvement
of stability conferring improved pharmacokinetic profiles [14–19]. However, it is important to ask whether the
antimicrobial activity of peptidomimetics indeed provides significant advantages over AMPs composed of natural
amino acids.

To address this question and provide further insight into design parameters, a systematic review was undertaken,
summarizing experimental studies that assessed the MICs of both AMPs and antimicrobial peptidomimetics in
Escherichia coli provenances. Analysis of the existing data for AMPs and peptidomimetics demonstrated that there
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Table 1. Advanced search strategy.

Science Direct 1 KEYWORDS (Antimicrobial AND peptides AND Escherichia coli AND Minimum Inhibitory Concentration), YEARS (2018–2020), ARTICLE
TYPE (Research article)
Total: 1353

2 KEYWORDS (Antimicrobial AND peptidomimetics AND Escherichia coli), YEARS (2018–2020), ARTICLE TYPE (Research article)
Total: 40

PubMed 1 Search: antimicrobial peptides, Escherichia coli Filters: from 2016–2020
(“anti infective agents”[Pharmacological Action] OR “anti infective agents”[MeSH Terms] OR (“anti infective”[All Fields] AND
“agents”[All Fields]) OR “anti infective agents”[All Fields] OR “antimicrobial”[All Fields] OR “antimicrobials”[All Fields] OR
“antimicrobially”[All Fields]) AND (“peptid”[All Fields] OR “peptidal”[All Fields] OR “peptide s”[All Fields] OR “peptides”[MeSH Terms]
OR “peptides”[All Fields] OR “peptide”[All Fields] OR “peptidic”[All Fields]) AND (“Escherichia coli”[MeSH Terms] OR (“Escherichia”[All
Fields] AND “coli”[All Fields]) OR “escherichia coli”[All Fields])
Total: 3261

2 Search: antimicrobial peptidomimetics, Escherichia coli Filters: from 2016–2020
(“anti infective agents”[Pharmacological Action] OR “anti infective agents”[MeSH Terms] OR (“anti infective”[All Fields] AND
“agents”[All Fields]) OR “anti infective agents”[All Fields] OR “antimicrobial”[All Fields] OR “antimicrobials”[All Fields] OR
“antimicrobially”[All Fields]) AND (“peptidomimetic”[All Fields] OR “peptidomimetics”[Pharmacological Action] OR
“peptidomimetics”[MeSH Terms] OR “peptidomimetics”[All Fields]) AND (“escherichia coli”[MeSH Terms] OR (“Escherichia”[All Fields]
AND “coli”[All Fields]) OR ‘escherichia coli’[All Fields])
Total: 28

Google Scholar 1 Find articles: (Antimicrobial peptides) AND (Escherichia coli) WITH (Minimum inhibitory concentration) FROM 2016–2020, Exact phrase
”Minimum inhibitory concentration”
Total: 13,900

2 Find articles: (Antimicrobial peptidomimetics) AND (Escherichia coli) FROM (2016–2020), Exact phrase ”Minimum inhibitory
concentration”
Total: 712

is little variance in antimicrobial activity between the two types of compounds, but significant differences in MIC
values could be correlated to changes in overall net charge and charge density. Knowledge about such differences, or
lack of differences, provides useful information in the continued efforts to develop clinically relevant AMP-based
and peptidomimetic lead compounds for antimicrobial chemotherapy.

Methods
Systematic literature searches
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 checklist was used as a guide for
this systematic review [20]. A literature search within PubMed, Google Scholar and Science Direct databases was
performed by using a defined set of keywords, selecting original research articles in any language (provided they
could be translated into English) reporting on susceptibility test results (here MICs) for E. coli isolates in vitro
(for details, see Table 1). Studies published from January 2016 to December 2020 were included in this review to
compensate for fluctuations in research output within the peptide and peptidomimetic field over time, enabling
sufficient data to be analysed – review articles were not included. The final search was conducted on 16 March
2021.

Inclusion & exclusion criteria
Research articles reporting the antibacterial activity of AMPs and/or peptidomimetics against pathogenic and
laboratory strains of E. coli were included. Articles were not considered eligible for inclusion if they failed to
mention any of the selected keywords (Table 1) describing the MIC values of AMPs/peptidomimetics against E.
coli.

Eligible articles were screened by a two-step process, as described in Figure 1. Articles were first screened by
examining titles and abstracts alone. If keywords and/or minimum inhibitory analysis in E. coli was not mentioned,
articles were excluded. Duplicates were then removed before the full text was analysed; this included the title,
abstract and main body of the article. Only experimental studies from original research articles were included. The
selected studies were required to report MIC value(s) for one or more AMPs/peptidomimetics against an E. coli
provenance (laboratory strain or clinical isolate). In addition, studies including the MIC stated in μM or μg/ml
were included. However, if the necessary information was not available for the conversion of μM into μg/ml, these
values were excluded. Review articles and studies that could not be assessed (as described above) were excluded.
Articles in languages other than English were included if a transcript was available.
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Articles identified
through

ScienceDirect
(n = 1393)

Articles identified
through PubMed

(n = 3289)

Articles identified through
Geogle Scholar

(n = 14,612)

Articles without
mentions of

keywords/MIC
values in

title/abstract
excluded

(n = 18,409)

Science direct
articles screened

for eligibility
(n = 257)

PubMed articles
screened for eligibility

(n = 248)

Google Scholar articles
screened for eligibility

(n = 380)

Removal of
duplicates (n = 12)

Articles assessed for inclusion based on content of title,
abstract and/or full text (n = 873)

Records excluded due to:

– Review articles
– No minimum inhibitory

concentration/potentiation
analysis in results

– Not tested against Escherichia
coli pathogenic or laboratory

strains in results
– Cannot convert from µM to

µg/ml
– Cannot access full text/results

(n = 656)

Total number of articles full text screening and analysed: n = 217 
(AMP articles n = 166 and AMPM articles n = 51)

Figure 1. Study selection. Flow chart adapted from the PRISMA guidelines, showing the process of including articles
starting from a systematic search of Science Direct, PubMed and Google Scholar.
AMP: Antimicrobial peptide; AMPM: Antimicrobial peptidomimetics; MIC: Minimum inhibitory concentration.
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Titles and abstracts were screened, and the inclusion criteria were applied by two authors (LH, NMG). Full-text
articles of potentially relevant publications were obtained and reviewed independently by two authors (LH, NMG),
who made the final decision on whether the data were to be subjected to inclusion. In cases where inclusion was
uncertain, other authors were consulted, and final unanimous decisions were made after an in-depth discussion
(see Figure 1). For a full list of studies used, see Supplementary Tables 10 (for AMPs) & 11 (for antibacterial
peptidomimetics).

Definitions
The conventional definition of MIC was used – that is, the lowest drug concentration that completely inhibits
growth of a bacterial culture after overnight incubation as determined by either optical density measurements or
visible analysis.

AMPs were defined as naturally occurring peptides, including truncated analogues and analogues based on de
novo design to mimic natural AMPs, while semisynthetic or synthetic analogues of naturally occurring peptides
were grouped together and defined as antibacterial peptidomimetics.

Data extraction
The following data were extracted from each article: year of publication, molecular weight of the
peptide/peptidomimetic, length (i.e., number of residues) of the peptide/peptidomimetic, net charge of the
peptide/peptidomimetic, MIC, study design (methodology), type of E. coli provenance (laboratory strain or clini-
cal isolate), controls used, media used and research group. Quality assessment of different research groups and risk of
bias included comparisons between each laboratory method by looking into the following: whether a standardized
method was employed, controls and medium used and E. coli provenance used. Comparisons were then made for
each of these sections across research groups. In cases of missing data, no attempts were made to contact the authors
of such studies.

Data analysis
For data synthesis and analysis, various documentational and statistical packages were used: Microsoft Excel version
16.40, Prism 8 for macOS version 8.4.2 and IBM SPSS Statistics 26. The linear mixed-effects model was used
to evaluate the effects of compound type (i.e., peptide vs peptidomimetic), length, molecular weight, net charge,
standardized MIC determination method and type of E. coli provenance(s) on the log-transformed MIC values; lab
ID was included in the model as a random effect to account for multiple observations from the same lab. Statistical
significance was assessed in IBM SPSS Statistics 26 for all analyses. Statistically significant differences were set as
follows: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 (****). All error bars are standard deviations
from the mean unless specified otherwise. Prism 8 was used to construct graphical representations of the data.

Results
Systematic search
Initially, a list of criteria for selection of publications was developed as well as an advanced search strategy (Table 1).
This gave a starting number of possible publications to include. Figure 1 shows the study selection process according
to Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The initial search yielded 19,294 studies
in total. After screening titles and abstracts and exclusion of duplicates, 873 articles were selected for full-text
screening, after which 51 and 166 articles on antibacterial peptidomimetics and AMPs, respectively, remained for
data extraction and analysis. Included studies are compiled in Supplementary Tables 10 & 11 [8,21–231].

Publication bias analysis
To avoid undermining the validity of the review and to demonstrate that all publications met the criteria set (no
matter their outcome), publication bias was evaluated by comparing overall MIC values using a linear mixed-effects
model to evaluate the variation caused by the separate lab groups themselves (see Figure 2). For further data, see
Supplementary Tables 2–8. A linear mixed-effects model was also used to evaluate possible bias, focusing on which
E. coli provenances were used and whether a standard method of analysis was used. This enabled identification of
any significantly different laboratory results that could affect comparisons among peptides and peptidomimetics.
For each comparison, no significant differences between laboratories were found (p-values are included in the
footnote of Figure 2).
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Figure 2. Bias analysis. (A–B) Laboratory comparison. Similar covariance parameters indicate (Supplementary
Table 1) variation in minimum inhibitory concentration results and within labs is comparable for both peptide and
peptidomimetic data. Zero corresponds to an minimum inhibitory concentration of 1ug/ml. (C–D) Escherichia coli
provenance comparisons. Minimum inhibitory concentration values generated using laboratory vs clinical strains are
not significantly different for both peptide and peptidomimetic data (p = 0.957). (E–F) Method comparisons.
Minimum inhibitory concentration values generated for method comparisons are not significantly different for both
the peptide and peptidomimetic data (p = 0.477).
ns: Not significant.
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Figure 3. Minimum inhibitory concentration comparison
between peptide and peptidomimetic compounds. Minimum
inhibitory concentration values generated for peptides vs
peptidomimetics are not significantly different (p = 0.381).
ns: Not significant.

Comparison of MICs between AMPs & peptidomimetics
MIC values reported for AMPs were not significantly different from those reported for peptidomimetics, with
mean Log10 values of 1.24 μg/ml and 1.30 μg/ml, respectively (see Figure 3).

Factors affecting MIC values
Structural features, length, molecular weight and charge, of AMPs and antibacterial peptidomimetics, factors that
could influence the MIC value of each compound were assessed. It was found that neither length or molecu-
lar weight had a significant influence on MICs (see Figure 4).

In an investigation of the effect of the net charge of the AMPs and antimicrobial peptidomimetics, MIC values
appeared to be clearly correlated to this property. Thus, a decrease in MIC by 4.6% (p < 0.001) was observed for
each +1 increment in net charge, as depicted in Figure 4 & Supplementary Table 8. However, this effect was
found to be most pronounced in the range between 0 and +6, where a significant lowering of the MIC values was
observed. On the other hand, the incremental improvement in antibacterial activity (as measured by MIC) declined
as the net charge was increased beyond +6, as demonstrated in Figure 5. While these two net charge groupings
(i.e., 0–+6 and +6–+10) had varying effects on the MIC values, a substantial overlap was found (as depicted in
Figure 6).

To continue the investigation of the relationship identified between MIC values and overall net charge, charge
density was also considered to be of importance (see Supplementary Table 12). Charge density is defined as the
charge per residue in each peptide, and it was found to be correlated with high significance (p = 0.000013) to the
MIC values (see Figure 7), as demonstrated by a decrease in MIC by 44% for each +1 increment in charge density
(see Supplementary Table 16). The significance of charge density versus length (amino acid) was also analysed (see
Supplementary Tables 13–15). As the peptide length increased, the significance of the charge density was found
to be more pronounced. For peptides/peptidomimetics ranging from 0 to 15, 16 to 30 and 31 to 45 residues in
length, a decrease in MIC by 26%, 45% and 465%, respectively, was observed for each +1 increment in charge
density (see Supplementary Tables 17–19).

Discussion
This review provides a comprehensive and systematic comparative analysis of 217 studies reporting the antibacterial
activity against E. coli of AMPs and antibacterial peptidomimetics, spanning the years 2016–2020. Its focus was
to assess whether significant differences between AMPs and peptidomimetics could be identified with respect to
the influence of simple structural features on their MIC values for this Gram-negative pathogen. Throughout
the literature, it is stated that the development of novel AMPs and antibacterial peptidomimetics via appropriate
chemical alterations is an efficient means of improving on the functionality of natural AMPs while tuning their
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Figure 4. Effect of length, molecular weight and charge on minimum inhibitory concentrations in peptide and
peptidomimetic compounds. (A) Length does not have a significant effect on minimum inhibitory concentration
values (p = 0.250). (B) Molecular weight does not have a significant effect on minimum inhibitory concentration
values (p = 0.138). (C) Charge does have a significant effect on minimum inhibitory concentration values (p < 0.001).
Estimates of fixed effects demonstrates that an increase in charge causes a decrease in Log10 minimum inhibitory
concentration by 4.6% (p < 0.001).
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shows an exponential decay. Between charges 0 and 6 there is a significant improvement in MIC with increased
charge. As charge increases over 6, the incremental improvement in MIC decreases.
MIC: Minimum inhibitory concentration.

pharmacological properties [232]. Therefore, peptidomimetics, whose essential elements (pharmacophore) mimic
those of a natural peptide in 3D space, are expected to retain the ability to interact with the biological target and
produce equal or higher biological effects [233,234].

There are multiple publications discussing natural AMPs, their current use as clinical agents and their key lim-
itations as compared with synthetic antibacterial peptidomimetics as well as research papers on the antimicrobial
activity of AMPs and antibacterial peptidomimetics on various pathogens [21–26,235,236], detailing how effective
these compounds are and highlighting their potential for clinical applications [233]. However, a direct comparison
of general biological efficacy in vitro between antimicrobial peptidomimetics and AMPs has not been investi-
gated systematically within a large dataset until now. Within this review, it has been identified that antimicrobial
peptidomimetics, albeit retaining potency, do not provide an advantage over AMPs in terms of in vitro biolog-
ical potency. Additionally, it was found that the overall charge and charge density of AMPs and antimicrobial
peptidomimetics significantly affected antibacterial potency.
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As already mentioned, the aim of the present systematic review was to evaluate whether antimicrobial pep-
tidomimetics provide an increased advantage over AMPs by giving a consolidated and quantitative overview of
recently reported MIC data for these compound classes. Systematic reviews are seen as increasingly useful tools
to reveal patterns that might not be obvious from analysis of a few studies, thereby offering new opportunities
to critically evaluate and statistically assess results from comparable studies [237]. With an increasing number of
observations, the statistical power is obviously improved. In addition, quantifying sources of variability between
studies is possible only by evaluating large, comprehensive datasets. While systematic reviews are not without
limitations (including the effects of publication bias and the complexity of the statistical analysis), they provide an
increased degree of generalization of the results obtained in individual studies, which may enable the resolution of
apparent conflicts between studies, and thus yield conclusive results, when individual studies are inconclusive [238].

Initially, possible biases were eliminated by using several methods. First, individual MIC results from each
laboratory were compared. Significant overlap of MIC results for both AMPs and peptidomimetics was observed
(Figure 2A & B), which highlights no significant differences between the laboratories that could skew the compar-
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Figure 7. Effect of charge density on minimum inhibitory concentrations in peptide compounds. Charge density
does have a significant effect on minimum inhibitory concentration values (p < 0.0001) with significance increasing
with peptide length (Supplementary Tables 13–15).

ative analysis. This is further highlighted through similar covariance parameter estimates (Supplementary Table 1),
indicating low variation between and within the individual laboratory groups. Therefore, while a variety of AMPs
and antibacterial peptidomimetics were analysed, their MIC values were still comparable, with the variation arising
from differences in structure. The same method was repeated for analysis of E. coli provenance and laboratory
methods. Many MIC results were obtained by using various E. coli laboratory strains and clinical isolates as well as
various methods for MIC determination (i.e., Clinical & Laboratory Standards Institute standard vs nonstandard
protocols). For the MIC results to be comparable, these biases were analysed, but these were not found to be
significantly different (Figure 2).

As stated above, it was found that antibacterial peptidomimetics do not have a significant advantage over AMPs
in terms of their in vitro antibacterial potency. The variation in MIC values found for peptides versus those seen
for peptidomimetics was not significantly different. Thus, AMPs displayed Log10 MIC values with a mean of
1.24 μg/ml, while peptidomimetics had Log10 MIC values with a mean of 1.30 μg/ml (p = 0.381), as depicted
in Figure 3. It had been assumed that antibacterial peptidomimetics have the potential to provide a more potent
alternative to AMPs [239]. However, direct comparison of in vitro efficacy has yet to be established. Therefore, these
findings suggest that antibacterial potency will not be reduced upon backbone modifications or the introduction
of synthetic amino acids, although it may instead allow for improved pharmacological features (e.g., hemolysis and
general cell toxicity).

In addition, the structural features’ length (i.e., number of residues in the sequence), molecular weight and charge
were evaluated in relation to in vitro efficacy of AMPs and antibacterial peptidomimetics. Here a relationship between
overall compound charge/charge density and in vitro efficacy of AMPs and antimicrobial peptidomimetics was
discovered. The net charge was assessed against individual MIC values, and it proved to have a significant effect. A
fixed-effects model demonstrated a decrease in MIC by 4.6% for each charge increment of +1.

This relationship was to be expected for membrane-disruptive peptides/peptidomimetics, ultimately corrobo-
rating the assumption that highly positively charged compounds will be strongly attracted to the negatively charged
outer membrane of Gram-negative pathogens, causing such compounds to exhibit an increased in vitro efficacy.

However, this relationship reached a plateau at charges of +6 and above. Hence, it was found that increments
of +1 in net charge within the range 0–+6 conferred significantly improved MIC values, whereas the relative
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incremental improvement of MIC values declined when the net charge was increased beyond +6. Thus, with +6 as
the threshold value, it appears unnecessary to exceed this when trying to improve antibacterial potency by structure
optimization.

In contrast, a comparison of MIC values between these two net charge groupings (i.e., 0–+6 and +6–+10)
displayed substantial overlap, demonstrating that other structural factors must be influencing MIC values as well.
This has also been highlighted throughout the literature, where it has been shown that antibacterial peptidomimetics
with the same net charge can have substantially different MIC values due to varying backbone or side chain
modifications (i.e., some side chains confer a higher potency than others) [27]. Therefore, while charge does
significantly affect the in vitro efficacy of AMPs and antibacterial peptidomimetics, it cannot be ruled out that
further modifications of the structure might increase the potency once it has reached the charge threshold value of
+6.

In addition to the influence of net charge, charge density of the peptides was assessed against MIC values, and
this property was found to be significant, highlighting a relationship with both charge and length. As peptide
length increased, the significance of charge density also increased. This finding has also been previously discussed
in several papers, whereby careful tuning of the charge density resulted in varying activity [240–243]. However, as the
biological properties of synthetic and natural peptides result from the interplay of multiple parameters, it is not
possible only to use the observed relationships between MIC and net charge as well as charge density to predict the
exact properties for future designed peptidomimetics [240].

One crucial limitation that was discovered during the data search stage performed as the basis for this systematic
review was the lack of information presented in each publication, which included pharmacokinetics/dynamics,
toxicity and stability of the AMPs or antibacterial peptidomimetics. Therefore, establishing an overview on the
safety profiles of these compounds was not possible. Although many peptidomimetics exhibit excellent antibacterial
potency in vitro (as demonstrated in Figure 3), they may exert unexpected side effects when tested via in vivo animal
models. Some publications have recognized that peptides and peptidomimetics designed for optimal antibacterial
activity often possess undesired safety profiles in vivo, since the properties promoting efficient bactericidal effects
typically also confer increased toxicity toward mammalian cells [26,244–246]. Importantly, careful adjustment of
hydrophobicity can lower undesired cell toxicity without substantial loss of antibacterial potency [27,240]. With a
sufficient amount of data on other chemical characteristics, such as hydrophobicity, further relationships between
other structural features and in vitro antibacterial efficacy could have been drawn. The analysis of these factors
may allow for a much more detailed conclusion regarding the potential for clinical application of antibacterial
peptidomimetics as compared with AMPs.

Conclusions were further hampered by a lack of availability of peptide or peptidomimetic sequences in many
reported studies. In such cases, in-depth structural comparisons could not be carried out and features that might
have an additional effect on the in vitro efficacy, independent of net charge or charge density, could not be identified.
These limitations include the lack of identification of various side chains or specific backbone modifications that
could positively or negatively affect the MIC values. Additionally, computational software that recognizes unnatural
amino acids present in antibacterial peptidomimetics is not available, which further obstructed the comparison of
the limited AMP and antibacterial peptidomimetic sequences/structures available. While there has been significant
progress in relation to AMP structural analysis [247,248], further understanding of differences in peptidomimetic
structures, new programs and quantitative analyses should be developed [249,250]. Overall, to comment further
on the comparison of AMPs and peptidomimetics, additional sequence analysis would be needed, including a
comparison of side chains. This might allow for identification of other structural features that may contribute to
the improvement of the pharmacological profiles (i.e., activity, toxicity and/or stability) of these compounds.

Conclusion
This systematic review of the literature investigated the activities of AMPs and antibacterial peptidomimetics against
Gram-negative bacteria (represented by E. coli). While the findings provide an insight into the antibacterial potency
of AMPs versus that of peptidomimetics, they also highlight the importance of sequence comparisons in future
efforts to design peptidomimetics.

Synthetic peptidomimetics were found to possess antibacterial potency in terms of in vitro efficacy similar to
that of naturally occurring AMPs. When designing peptidomimetics (or close analogues of AMPs), the net charge
should have priority over length and molecular weight. However, the charge density of peptidomimetics may be
kept almost constant (relative to the length) to retain or increase potency for shorter/longer analogues. To make
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further correlations between in vitro efficacy and structural features, more detailed structural information must be
made more accessible. This would allow additional structure–activity relationships to be revealed, which would
assist in the design of future peptidomimetics.

The potential applications of modified AMPs (e.g., into peptidomimetics) with improved stability and phar-
macokinetic properties is stimulating an extensive research effort within this field, and the present work infers
that synthetic antibacterial peptidomimetics typically match the in vitro potency of naturally occurring AMPs.
Therefore, future design should focus on structural modifications that provide more favorable pharmacological
activity profiles, and a prerequisite to achieving this is that the net charge or charge density of the compound is
retained or increased toward the optimum.

Future perspective
Resistance to antibiotics constitutes a continuous threat, causing major public health concerns globally, in
part, due to insufficient discovery and development of new antimicrobials [251]. AMPs are potential alterna-
tives to conventional antimicrobials, and in animal models they have proved suitable for the treatment of
multidrug-resistant infections while also having a lower risk of inducing rapid antimicrobial resistance as com-
pared with traditional antibiotics [3]. However, the therapeutic application of AMPs is often limited due to
their pharmacokinetic/pharmacodynamic properties, such as toxicity and stability [252]. Therefore, antibacterial
peptidomimetics, retaining the potency of AMPs, constitute favorable replacements for these, which may be fine-
tuned to achieve more desirable pharmacokinetic/pharmacodynamic profiles, thereby effectively bypassing the
limitations of AMPs [1]. The potencies and structural features of both AMPs and antibacterial peptidomimetics
described here are the starting points for understanding the significant differences observed within both com-
pound classes. However, further research, including methods enabling evaluation of the structural features of
antibacterial peptidomimetics, is required. At present, general methods allowing the identification of unnatural
amino acids, side chains and backbones that either diminish or enhance the potency (as well as how these affects
pharmacokinetic/pharmacodynamic properties) of antibacterial peptidomimetics do not exist. Thus, accurate eval-
uation of AMP structures in comparison with analogous synthetic peptidomimetics can aid the design process to
create effective therapeutic candidates that might alleviate the continuous emergence of antimicrobial resistance in
pathogenic bacteria.

Summary points

Comparison of minimum inhibitory concentrations (MICs) between antimicrobial peptides & peptidomimetics
• Antimicrobial peptides (AMPs) and their synthetic counterparts (antibacterial peptidomimetics) display similar

potency against various Escherichia coli laboratory strains and clinical isolates.
Factors affecting MIC values
• This study briefly investigated some structural features expected to influence the MIC of either AMPs or

antibacterial peptidomimetics.
• Net charge and charge density are important determinants for the potency of both AMPs and antibacterial

peptidomimetics.
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against Escherichia coli with in vitro fusogenic ability. Int. J. Mol. Sci. 21(23), 1–19 (2020).

68. Bolatchiev A. Antibacterial activity of human defensins against Staphylococcus aureus and Escherichia coli. Peer J. 8, e10455 (2020).
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181. Migliolo L, Feĺıcio MR, Cardoso MH et al. Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide
Pa-MAP2. Biochim. Biophys. Acta Biomembr. 1858(7), 1488–1498 (2016).

182. Parravicini O, Somlai C, Andujar SA et al. Small peptides derived from penetratin as antibacterial agents. Arch. Pharm.
(Weinheim) 349(4), 242–251 (2016).

1918 Future Med. Chem. (2022) 14(24) future science group



Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review Systematic Review

183. Shang D, Zhang Q, Dong W, Liang H, Bi X. The effects of LPS on the activity of Trp-containing antimicrobial peptides against
Gram-negative bacteria and endotoxin neutralization. Acta Biomater. 33, 153–165 (2016).

184. Ma B, Niu C, Zhou Y et al. The disulfide bond of the peptide thanatin is dispensible for its antimicrobial activity in vivo and in vitro.
Antimicrob. Agents Chemother. 60(7), 4283–4289 (2016).

185. Vasilchenko AS, Rogozhin EA, Vasilchenko AV, Kartashova OL, Sycheva MV. Novel haemoglobin-derived antimicrobial peptides from
chicken (Gallus gallus) blood: purification, structural aspects and biological activity. J. Appl. Microbiol. 121(6), 15461557 (2016).

186. Li Z, Wang P, Jiang C, Cui P, Zhang S. Antibacterial activity and modes of action of phosvitin-derived peptide Pt5e against clinical
multi-drug resistance bacteria. Fish Shellfish Immunol. 58, 370–379 (2016).

187. Hong J, Hu J, Ke F. Experimental induction of bacterial resistance to the antimicrobial peptide tachyplesin I and investigation of the
resistance mechanisms. Antimicrob. Agents Chemother. 60(10), 6067–6075 (2016).

188. Shi D, Hou X, Wang L et al. Two novel dermaseptin-like antimicrobial peptides with anticancer activities from the skin secretion of
Pachymedusa dacnicolor. Toxins (Basel) 8(5), 144 (2016).

189. Irazazabal LN, Porto WF, Ribeiro SM et al. Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide
mastoparan. Biochim. Biophys. Acta Biomembr. 1858(11), 2699–2708 (2016).

190. Bagheri M, Nikolenko H, Arasteh S et al. Bacterial aggregation triggered by fibril forming tryptophan-rich sequences: effects of peptide
side chain and membrane phospholipids. ACS Appl. Mater. Interfaces 12(24), 26852–26867 (2020).

191. Hasan A, Saxena V, Castelletto V et al. Chain-end modifications and sequence arrangements of antimicrobial peptoids for mediating
activity and nano-assembly. Front. Chem. 8, 416 (2020).

192. Green RM, Bicker KL. Evaluation of peptoid mimics of short, lipophilic peptide antimicrobials. Int. J. Antimicrob. Agents 56(2), 106048
(2020).
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