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Abstract

Blood vessels are lined by a single layer of endothelial cells
that provide a barrier between circulating plasma and the un-
derlying tissue. Permeability of endothelial cells is tightly
regulated, and increased permeability is associated with a
number of diseases including atherosclerosis. Endothelial cells
are continuously exposed to mechanical forces exerted by
flowing blood and are particularly sensitive to shear stress,
which is a key determinant of endothelial function. Undisturbed
flow promotes endothelial resilience and reduces permeability
to macromolecules whereas disturbed flow promotes endo-
thelial dysfunction and barrier disruption. This review will
outline recent advances in our understanding of how disturbed
and undisturbed flow regulate paracellular and transcellular
permeability and will highlight potential cellular targets that
could form the basis of therapies to limit the development of
cardiovascular disease.
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Endothelial cells and atherosclerosis

The endothelium forms a continuous monolayer that
lines the interior walls of all blood vessels and regulates
many processes that control vascular function including
inflammation, angiogenesis, haemostasis, and vasodila-
tion. Endothelial cells also provide a semipermeable
barrier between circulating plasma and the underlying
tissue, allowing the transport of gases and nutrients
while restricting the leakage of macromolecules from
the circulation [1]. Endothelial permeability is tightly
regulated to meet the demands of the tissue and varies

depending on the vessel type. Venous endothelial cells
exhibit increased permeability when compared to arte-
rial endothelium with enhanced responsiveness to
permeability factors [2]. Additionally, there are tissue
specific differences, with vessels of the blood-brain and
blood-retinal barrier exhibiting the tightest barriers
which severely restricts transport [1,3].

Endothelial dysfunction and increased permeability play
an important role in many diseases [1] and is a key factor
in the development of atherosclerosis [4], a chronic in-
flammatory condition characterised by the development
of lipid-rich plaques within the vessel wall. The devel-
opment of atherosclerosis is highly focal with plaques
forming in the regions of arteries exposed to non-
uniform (disturbed) flow revealing the importance of
haemodynamic stresses in atherosclerosis [4].

Mechanical forces regulate vascular function
Endothelial cells are continuously exposed to mechan-
ical forces exerted by flowing blood. These include
tensile stresses arising from circumferential stretch of
the vessel wall and the stress exerted perpendicularly on
the wall by hydrostatic pressure. Endothelial cells are
particularly sensitive to shear stress, which is the me-
chanical drag exerted by blood flow along the vessel wall
and is defined as the tangential frictional force of blood
flow per unit area. Shear stress is a key determinant of
endothelial function, and both the magnitude and
directionality of shear stress are important.

Whilst is widely accepted that unidirectional, high
magnitude shear stress (10—40 dyn/cmz) is associated
with the activation of cytoprotective mechanisms and
protection from endothelial dysfunction and athero-
sclerosis, there continues to be debate regarding the
contribution of low magnitude (<5 dyn/cmz), oscillatory
(bidirectional), and multidirectional flow to atherogen-
esis. Recent work has highlighted the importance of
multidirectional flow in  promoting endothelial
dysfunction [5] and atherosclerosis [6]; however, the
role of low time-averaged wall shear stress is less clear
with conflicting evidence regarding its role in plaque
formation [6,7].

It is also important to consider the different  vitro
methods that are used to study the effects of shear stress
on endothelial cells since the haemodynamic profiles
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generated can vary significantly and will depend on the
configuration of the system being used, as reviewed
elsewhere [8]. Parallel-plate flow chambers, cone and
plate viscometers, and microfluidic devices are
commonly used to expose cells to unidirectional or
oscillatory flow, whereas multidirectional flow can be
achieved using the swirling well (orbital shaker) method
or through the modification of parallel-plate flow cham-
bers [8]. Most commonly used  vifro systems are not yet
able to induce multidirectional flow without also result-
ing in low time-averaged wall shear stresses, and so for
the purposes of this review, disturbed flow denotes flow
that is low in magnitude and oscillatory/multidirectional.

Shear stress-dependent regulation of endothelial
function

Undisturbed flow activates homeostatic pathways and
promotes endothelial resilience. Conversely, disturbed
flow is associated with endothelial dysfunction and
atherosclerosis [9]. The differential effects of disturbed
flow and undisturbed flow on endothelial cells may be
attributed to the activation of different mechanosensi-
tive transcription factors, reviewed elsewhere [10]. The
transcription factors Kruppel-like factor-2 and -4 (KLF-
2, KLF-4) and nuclear factor erythroid 2-related factor 2
(Nrf-2) are preferentially activated in endothelial cells
exposed to flow, whereas endothelial cells exposed to
disturbed flow exhibit enrichment of nuclear factor
kappa-light chain-enhancer of activated B cells (NF-
KB), activator protein-1 (AP-1), YAP/TAZ/TEAD, and
hypoxia-inducible factor 1o (HIF-1a), which contribute
to endothelial dysfunction [10]. Disturbed flow pro-
motes inflammatory signalling, apoptosis, oxidative
stress, endothelial-to-mesenchymal transition, and
senescence [11]. Shear stress also regulates endothelial
barrier function, with 7 viwo and i vitro studies both
demonstrating that endothelial cells exposed to
disturbed flow exhibit increased permeability to albu-
min and low-density lipoprotein (LDL) [4,12,13].

Shear stress-dependent regulation of endothelial
permeability

Substances can be transported across endothelial cells
via paracellular or transcellular routes [14]. Endothelial
paracellular permeability is predominantly regulated by
the two types of intercellular junctions: tight junctions
and adherens junctions [1,3] (see Figure 1). Endothelial
permeability is increased following a loss of junctional
integrity and formation of focal gaps between endothe-
lial cells.

Adherens junctions

Adherens junctions are formed by Ca2+-dependent
homophilic interactions between the transmembrane
protein vascular endothelial (VE)-cadherin on adjacent
endothelial cells and between VE-cadherin and associ-
ated cytoplasmic proteins (B-, Y-, and p120-catenin).

These proteins associate with the actin cytoskeleton via
interaction with o-catenin [1]. The regulation of VE-
cadherin plays a key role in determining junctional
integrity and barrier function [1,15]. Increased perme-
ability of venous endothelial cells arises due to inter-
nalisation and degradation of VE-cadherin following low
shear-mediated phosphorylation of VE-cadherin [2].
Adherens junctions can also be stabilised by binding of
Rac to VE-cadherin in response to undisturbed flow
[16]. Aside from flow-dependent regulation, adherens
junction proteins also play a direct role in endothelial
mechanosensing [17].

Tight junctions

Tight junctions determine the tightness of the endo-
thelial barrier and are formed by homophilic interactions
between the transmembrane proteins claudins, occlu-
din, and junctional adhesion molecules on adjacent cells.
Membrane-spanning proteins associate with cyto-
plasmic scaffold proteins such as zonula occludens pro-
teins (ZO-1, ZO-2, Z0O-3), cingulin, and paracingulin
that interact with the cytoskeleton [1]. Crosstalk be-
tween adherens junctions and tight junctions enables
barrier function to be regulated in a co-ordinated
manner. VE-cadherin regulates the expression of
claudin-5 whilst ZO-1 interacts with VE-cadherin to
increase stability [18]. Little is known about the
mechanoregulation of tight junctions by shear stress in
endothelial cells [19].

Transcellular permeability

LDL is transported across endothelial cells via a trans-
cellular route [20]. Given the importance of LDL
transport to the development of atherosclerosis, it is
surprising that the mechanisms underlying flow-
dependent alterations in endothelial transcellular
transport are poorly defined.

This review will summarise recent advances in our un-
derstanding of how mechanosignalling pathways acti-
vated in response to either undisturbed flow or
disturbed flow regulate endothelial permeability.
Although it is increasingly recognised that shear stress
plays a critical role in the formation and maintenance of
the blood-brain barrier [21—23], the focus of this review
will be on the peripheral vasculature.

New insights into endothelial transport
under physiological flow conditions

There has long been a debate about the predominant
transport routes for macromolecules across endothelial
cells and how these may be influenced by shear stress
[14]. A long-favoured hypothesis was that macromole-
cules cross the endothelial barrier at ‘leaky junctions’
arising from cells undergoing mitosis or apoptosis [12].
The development of a method to directly visualise
transport routes across cultured endothelial cells has
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Paracellular permeability is regulated by adherens junctions and tight junctions. Adherens junctions are formed by homophilic interactions between
membrane-spanning VE—cadherin on adjacent endothelial cells. VE—cadherin is associated with the actin cytoskeleton via interactions with - and a-
catenin. Tight junctions are formed by homophilic interactions between membrane-spanning claudins, occludin, and junctional adhesion molecules on
adjacent endothelial cells. Membrane-spanning proteins associate with cytoplasmic scaffold proteins such as zonula occludens proteins (ZO-1, ZO-2,
Z0-3), cingulin, and paracingulin that interact with the cytoskeleton. Crosstalk between adherens junctions and tight junctions enables barrier function to
be regulated in a co-ordinated manner. Image created with BioRender.com and published with a BioRender content licence for use in academic journals.

clarified many of these questions [24]. Using this
method in combination with substrate-binding tracers
of different sizes, the presence of three transport
pathways was observed: albumin-sized tracers cross
endothelial cells via a paracellular route through bicel-
lular and tricellular junctions, transport of high-density
lipoprotein-sized tracers occurs only at tricellular junc-
tions, and LDL-sized tracers are transported across
endothelial cells via transcytosis [13]. A subsequent
study on the transport of albumin-sized tracers revealed
that most (>80%) transport occured at tricellular junc-
tions [25]. This study also revealed that in endothelial
cells exposed to disturbed flow, the number of leaky
tricellular junctions was increased compared to undis-
turbed flow and that the permeability of tricellular
junctions was increased [25]. The role of tricellular
junctions in endothelial dysfunction and atherogenesis
has received little attention to date and is, therefore, an
important area for further study.

To clarify the role of ‘leaky junctions’ in endothelial
transport, a cell-by-cell analysis was conducted to probe

for evidence of transport around endothelial cells un-
dergoing apoptosis or proliferation [26]. Whilst a posi-
tive correlation was observed between apoptosis or
proliferation and increased permeability, less than 5% of
paracellular transport was associated with these events.
Thus, whilst apoptosis and proliferation of endothelial
cells can alter junctional integrity, the increase in
permeability associated with disturbed flow cannot be
explained by these events alone [26].

Mechanosignalling pathways that promote
barrier disruption

Disturbed flow is known to promote endothelial
dysfunction and to increase endothelial permeability;
however, relatively little is known about the mechano-
signalling pathways that lead to barrier disruption
[27,28]. Several recent papers have identified new
permeability-regulating pathways or provided additional
insight into previously described pathways (see
Figure 2). For example, p21-activated kinase (PAK) has
long been known to increase paracellular permeability in
endothelial cells exposed to disturbed flow [29];
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Figure 2
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Mechanosignalling pathways that destabilise endothelial barrier function. Disturbed flow induces endothelial barrier disruption by destabilising
adherens junctions and tight junctions. Nck1 is activated by disturbed flow which promotes the association of PAK with VE-cadherin. PAK destabilises
adherens junctions and increases permeability. Disturbed flow also increases the expression of EVA1A which promotes barrier disruption. Disturbed flow
also increases permeability via increased p-catenin signalling which reduces the expression of ZO-1 and reduces localisation of vinculin to cell junctions.
Re-distribution of vinculin away from cell junctions is also facilitated by GRK2 which is activated in response to disturbed flow. Permeability is also
increased following disturbed flow-mediated activation of ALK5. DF; disturbed flow, Nck; noncatalytic region of tyrosine kinase-1, PAK; p21-activated
kinase, EVA1A; Eva-1 Homolog A, ZO-1; zonula occludens-1, GRK2; G-protein-coupled receptor kinase 2, ALK5; activin receptor-like kinase-5. Image
created with BioRender.com and published with a BioRender content licence for use in academic journals.

however, the mechanism was unclear. It was recently
shown that the SH2/SH3 domain containing adapter
protein, noncatalytic region of tyrosine kinase-1 (Nck1),
is activated in response to disturbed flow and that this
mediates disturbed flow-dependent PAK activation
[30]. The deletion of Nck1 prevents the recruitment of
PAK to cell junctions and significantly inhibits disturbed
flow-induced paracellular permeability [30].

Similarly, TWIST1 was previously shown to increase the
permeability of endothelial cells exposed to disturbed
flow [31]. A new study by the same group demonstrates
that under disturbed flow, TWIST1 increases the
expression of EVA1A (Eva-1 Homologue A) which pro-
motes barrier disruption [32]; however, the mechanisms
by which EVA1A regulates permeability are not yet clear.
Increased expression of EVA1A was associated with a
reduction of autophagic flux and consequent increase in
apoptosis although, as discussed above, this is not likely
to account for the changes in permeability observed [26].

We have recently shown that disturbed flow increases
paracellular permeability via a Frizzled-4-B-catenin-
dependent mechanism [33]. Inhibition of B-catenin-

dependent transcriptional activity reduced permeability
in endothelial cells exposed to disturbed flow and was
associated with increased expression of ZO-1 and altered
junctional and cytoskeletal organisation [33]. Inhibition of
B-catenin signalling also resulted in redistribution of
vinculin away from focal adhesions with increased local-
isation around endothelial junctions [33] which is associ-
ated with increased stability [34]. Consistent with our
study, it has been shown that in endothelial cells exposed
to disturbed flow, G-protein-coupled receptor kinase 2
(GRK2?) increased the phosphorylation of vinculin on
Ser721. This results in the inactivation of vinculin,
disruption of adherens junctions, and increased para-
cellular permeability [35].

We have also shown that transforming growth factor-§
(TGF-B) 'Type 1 receptor, also known as activin
receptor-like kinase-5 (ALKS), contributes to the
disturbed flow-dependent barrier disruption [36].
Crosstalk and synergy between P-catenin and TGF-3
signalling has been documented in endothelial cells
[37], and therefore, it will be important to establish if
the effects of B-catenin on barrier disruption are
mediated by ALKS or vice versa.
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Mechanosignalling pathways that stabilise endothelial barrier function. Undisturbed flow promotes stabilisation of endothelial cell junctions by
increasing the expression of the Inc-RNA MALAT-1, which increases the expression of ZO-1 and occludin. Permeability is also reduced following up-
regulation of KLK10 in response to undisturbed flow and via increased internalisation of VE-PTP. This results in enhanced activation of Tie2 which
stabilises VE-cadherin. Undisturbed flow also reduces transcellular permeability via increased expression of FSTL-1. FSTL-1 reduces permeability in part
via inhibition of BMP4 signalling. BMP-4; bone morphogenic protein-4, FSTL-1; Follistatin-like 1, KLK10; Kallikrein-related peptidase-10, UF; undisturbed
flow, VE-PTP; vascular endothelial protein tyrosine phosphatase, ZO-1; zonula occludens-1. Image created with BioRender.com and published with a

BioRender content licence for use in academic journals.

Mechanosignalling pathways that stabilise
endothelial barrier function

Whilst it is widely accepted that atheroprotective shear
stress reduces permeability to macromolecules and
stabilises endothelial barrier function [38], there have
been few studies into the precise mechanical signalling
pathways involved. Previous research has shown that the
long non-coding RNA (Inc-RNA), SENCR stabilises
proteins within adherens junctions and reduces
permeability [39]. A new study has highlighted the role
of a second Inc-RNA, MALATI, in maintaining barrier
integrity [40]. Acute exposure to undisturbed flow
caused upregulation of MALATI which increased the
expression of ZO-1 and occludin. This is inferred to
result in improved barrier function although this was
only studied under static conditions. The authors
demonstrated that acute exposure to undisturbed flow
also increased the nuclear localisation of B-catenin, in a
Nesprin-dependent manner, and that this was respon-
sible for the increase in MALATI expression. These
observations contrast our recent findings on the role of
B-catenin in regulating permeability in endothelial cells
exposed to disturbed flow [33] and may reflect a dif-
ference between acute and chronic exposure to flow

[41]. Alternatively, the use of a different extracellular
matrix may account for divergent findings [28]. The
in vivo permeability assays using a tankyrase inhibitor
(XAV-939) also contrast with our finding that B-catenin
mediates barrier disruption; however, it is not clear that
the inhibitor reduces the P-catenin activity or whether
the effects demonstrated # vivo could occur via modu-
lation of other tankyrase targets [42].

Other studies have highlighted important roles for Tie2
[43] and Kallikrein-related peptidase-10 (KLK10) [44]
in enhancing barrier function in endothelial cells
exposed to undisturbed flow. Previous studies have
shown that the activation of Tie2 can increase junctional
stability and reduce permeability and that Tie2 can be
inhibited by vascular endothelial protein tyrosine
phosphatase (VE-PTP). A new study demonstrated that
endocytosis of VE-PTP was increased in endothelial
cells exposed to undisturbed flow, sequestering it from
Tie2, resulting in enhanced Tie2 activity [43]. KLLK10, a
secreted serine protease, was also shown to be upregu-
lated by undisturbed flow [44]. Studies using recombi-
nant KLLK10 demonstrated that KLLK10 reduced the
permeability of endothelial cells and could reverse
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barrier disruption induced by disturbed flow, although
the mechanism of action is not yet known [44]. These
pathways are summarised in Figure 3.

Mechanosignalling pathways that regulate
transcellular transport

Using a novel technique to restrict endothelial growth to
either the centre or edge of swirling wells, where flow is
disturbed or undisturbed, respectively [45], it has been
discovered that endothelial cells exposed to undis-
turbed flow secrete a soluble mediator, Follistatin-like 1
(FSTL1) that reduces transcellular transport of LDL-
sized particles across endothelial cells [46]. FSTL1
mediates these effects partly via inhibition of BMP4
signalling, although data obtained using a BMP4 inhib-
itor suggest additional mechanisms are present [46].
These findings have not been confirmed 7 vivo although
it was shown that the expression of FSTL1 was greater
in endothelial cells exposed to undisturbed flow [46].

Conclusions and future perspectives

Recent research has revealed important new insights
into the regulation of permeability in endothelial cells
by shear stress (see Figures 2 and 3) and highlighted a
number of signalling molecules that could be targeted to
stabilise junctions and thereby reduce paracellular
permeability and endothelial dysfunction
[26,30,35,36,43,44]. These could be utilised as part of a
preventative strategy, alongside statins and anti-
inflammatory therapies, to further limit the develop-
ment and progression of atherosclerosis. The modifica-
tion of LDL transport may also provide another
important target to limit the deposition of cholesterol
within the vessel wall [46] and protect against cardio-
vascular disease. To date, this has been an understudied
area, especially given its importance in atherogenesis;
the recent identification of its dominant transport route
in endothelial cells under physiological flow conditions
will hopefully provide a platform for further studies into
its regulation. Before translation can be considered, it is
necessary to replicate many of these findings in animal
models since cultured endothelial cells exhibit perme-
ability values that are orders of magnitude higher than
those observed i vivo [47]. Whilst numerous # vivo
permeability assays are available [48], to explore specific
transport routes in different haemodynamic environ-
ments, the use of substrates that become immobilised in
the subendothelial space (in a manner similar to  vitro
methods [24]) would be the most informative.
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