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Summary
Background The influence of rising global temperatures on malaria dynamics and distribution remains controversial, 
especially in central highland regions. We aimed to address this subject by studying the spatiotemporal heterogeneity 
of malaria and the effect of climate change on malaria transmission over 27 years in Hainan, an island province in 
China.

Methods For this longitudinal cohort study, we used a decades-long dataset of malaria incidence reports from Hainan, 
China, to investigate the pattern of malaria transmission in Hainan relative to temperature and the incidence at 
increasing altitudes. Climatic data were obtained from the local meteorological stations in Hainan during 1984–2010 
and the WorldClim dataset. A temperature-dependent R0 model and negative binomial generalised linear model were 
used to decipher the relationship between climate factors and malaria incidence in the tropical region.

Findings Over the past few decades, the annual peak incidence has appeared earlier in the central highland regions 
but later in low-altitude regions in Hainan, China. Results from the temperature-dependent model showed that these 
long-term changes of incidence peak timing are linked to rising temperatures (of about 1·5°C). Further, a 1°C increase 
corresponds to a change in cases of malaria from –5·6% (95% CI –4·5 to –6·6) to –9·2% (95% CI –7·6 to –10·9) from 
the northern plain regions to the central highland regions during the rainy season. In the dry season, the change in 
cases would be 4·6% (95% CI 3·7 to 5·5) to 11·9% (95% CI 9·8 to 14·2) from low-altitude areas to high-altitude areas.

Interpretation Our study empirically supports the idea that increasing temperatures can generate opposing effects 
on malaria dynamics for lowland and highland regions. This should be further investigated and incorporated into 
future modelling, disease burden calculations, and malaria control, with attention for central highland regions 
under climate change.
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Introduction
In the past 20 years, the world has made great progress in 
fighting malaria. Despite this progress, malaria remains 
one of the most serious challenges to global health. In 
2020, there were 241 million cases of malaria worldwide 
resulting in an estimated 627 000 deaths.1 The WHO 
African region has the largest burden of malaria 
morbidity, with 228 million cases (95%) in 2020, followed 
by the WHO South-East Asia region (2%).1 The seasonality 
and spatial distribution of malaria cases are affected by 
climatic factors, particularly temperature,2–4 which affects 
the population dynamics and biting rates of mosquitoes 
that transmit the disease.5,6 Temperature also affects the 
sporogonic cycle of these mosquitoes. A study showed 
that the extrinsic incubation period (the time for parasites 

to reach their infectious stage) was shortest at 34°C and 
increased at cooler temperatures by pairing of Anopheles 
stephensi and Plasmodium falciparum.7 The influences of 
temperature variability on mosquito-borne viruses, such 
as dengue and Zika, are well described and accepted.8,9 
However, the possible effects of temperature on malaria 
incidence are controversial.10–12 Rising temperatures above 
a critical minimum (approximately 18°C for extrinsic 
incubation period of P falciparum and 15°C for Plasmodium 
vivax)13 might contribute, directly or indirectly, to malaria 
transmission, whereas temperatures higher than a critical 
maximum (approximately 32°C for extrinsic incubation 
period of P falciparum and 31°C for P vivax)13 might 
decrease the survival of mosquitoes and parasites and 
reduce transmission.13,14 The role of rising temperatures 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2542-5196(22)00039-0&domain=pdf
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in increasing malaria incidence (especially malaria in 
highland areas) in Africa has been debated15–17 and is 
unclear because of the presence of confounding factors, 
such as antimalarial treatment, human migration, 
changes of land use, and time-changing sampling criteria 
for different locations.

Climate conditions, such as temperature and rainfall, 
affect malaria transmission largely through changes in 
the lifecycles of mosquitoes and parasites,13,14,18 as 
calculated with specific models. For example, the 
degree-day model was widely used to characterise the 
influence of temperature on extrinsic incubation 
period.14 A study found a lower thermal limit for the 
development of P falciparum in A stephensi and Anopheles 
gambiae based on laboratory experiments.19 Mechanistic 
models have also been developed to measure the 
influence of climatic factors on the intensity of malaria 
transmission, with a focus on the effect of temperature 
change.4,5,8 This framework uses the results of laboratory 
studies to parameterise the non-linear temperature 
responses of mosquito and parasite life-history traits 
and synthesises these into estimates of the basic 
reproductive number (R0) of malaria through time and 
space. These studies have improved our understanding 
of the potential responses of malaria transmission to 
climate change and of the heterogeneity in malaria risk 
among regions. Long-term incidence of malaria 
involving climate factors was also under investigation, 
with focus on malaria forecasts in Botswana based on 
an operational seasonal climate model,20 observed 
increases in malaria driven by raised temperatures in 
the Kenyan highlands,3 or establishing the link between 
the decreases in malaria epidemics in the Ethiopian 
highlands and the slowdown in global warming.17 
However, to date, the longitudinal, population-level 
empirical data for studying the interplay between 
climate factors and spatial heterogeneity of malaria is 
often absent for China.

We address this subject by revealing the spatial hetero-
geneity of malaria and its response to climate change 
over 27 years (from January, 1984, to December, 2010) in 
Hainan, a tropical island province in southern China 
with 9 million residents in an area of 32 900 km². Hainan 
exhibited endemic malaria throughout the year under 
consistent surveillance criteria (eg, case definition). The 
region also has high environmental and altitudinal 
heterogeneity in a comparatively small area (appendix 
p 2) which was surveyed longitudinally with uniform 
standards (eg, data format). Therefore, confounding 
factors are easier to account for compared with studies 
from African countries. Furthermore, malaria incidence 
in Hainan increased monotonically from the low-altitude 
northern plain regions to the medium-altitude southern 
hilly regions and the high-altitude central highland 
regions (up to 1800 metres). For every 100-metre increase 
in altitude, the cumulative incidence increased by 
166·2 per 10 000 residents, which contrasts with the 
pattern in other endemic regions (eg, malaria incidence 
decreases from low to high altitude in Ethiopia and 
Colombia21). Over the past 50 years, more than 2 million 
malaria cases were reported in Hainan. In 1955, total 
annual incidence reached 1036 per 10 000 people, and 
parasites were detected in more than 50% of residents in 
the island’s south-central highland region.22 Due to 
successful control efforts, P falciparum incidence has 
declined, and P vivax has been the dominant malaria 
parasite on Hainan since the 1980s. Anopheles minimus 
and Anopheles dirus were the main malaria vectors. 
In 2021, WHO declared China a malaria-free country 
after a 70-year effort. We use a temperature-dependent 
model of malaria transmission to investigate how 
temperature variability might have influenced the 
seasonal and geographical distribution of disease, and 
compare the differences between the wet and dry 
seasons. Our results highlight the importance of 
considering the sensitivity and non-linear response of 
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Research in context

Evidence before this study
We searched PubMed for studies on temperature and 
spatiotemporal heterogeneity of malaria transmission from 
Jan 1, 2000, to May 1, 2021, using the search terms “malaria 
transmission”, “temperature”, and “modeling”. The effect of 
rising temperatures on the scale of malaria transmission has 
been explored extensively. However, empirical evidence on the 
effect of rising temperatures on seasonal malaria transmission 
is scarce, particularly for China.

Added value of this study
We use a 27-year dataset to show that malaria epidemic trends 
on a tropical island with more than 9 million inhabitants are 
sometimes inconsistent with model-based predictions of 
climate effects. By using mechanistic models, we showed how 
the intensity of malaria transmission is explained by the 

temperature on the island with spatial heterogeneity. We found 
that a trend of increasing temperature over several decades has 
shaped current patterns of malaria transmission in Hainan. 
Specifically, the annual peak incidence came earlier in the 
highland regions but later in lowland regions. The increasing 
temperature is associated with fewer cases during the rainy 
season, but more cases in the dry season.

Implications of all the available evidence
This study further shows the diverse effects of rising 
temperatures on malaria epidemic trends in tropical regions 
with great heterogenicity in altitude. Our results indicate the 
specific and precise mitigation and control for malaria, both in 
low-altitude regions and in the central highland regions, 
with appropriate timing and strength of control measures.

See Online for appendix
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malaria transmission to temperature when predicting 
future risk and malaria disease burden.

Methods
Data collection
For this longitudinal cohort study, individual malaria 
cases in Hainan, China, during Jan 1, 1984, to 
Dec 31, 2010, were obtained from the Hainan Provincial 
Center for Disease Control and Prevention. We collected 
the malaria cases from 2011 to 2015 for Hainan. In total, 
63 cases were reported, 53 of which were imported cases. 
The sample size of local cases was too small to support 
the analysis. Therefore, 2010 was chosen as the last year 
for data collection. We collected data starting from 1984. 
Clinically diagnosed and laboratory-confirmed cases 
were identified according to a unified set of diagnostic 
criteria issued by the Chinese Ministry of Health 
(panel).23 From 1984 to 2010, a total of 188 884 cases were 
reported from 18 cities and counties in Hainan. Among 
these cases, 55 170 (29·2%) cases were confirmed by 
clinical diagnosis, and 133 714 (70·8%) cases were 
confirmed by both laboratory (microscopy) and clinical 
diagnosis. In our dataset, clinically diagnosed cases were 
defined as a patient with malaria-like symptoms and 
having lived in or recently travelled to areas with known 
malaria transmission. Laboratory-confirmed cases were 
defined as patients clinically diagnosed with malaria 
parasites confirmed by microscopy. Because the recorded 
monthly number of cases does not distinguish between 
clinically diagnosed and laboratory-confirmed cases, we 
used the total number of cases in the subsequent 
analysis.

The total population size and gross domestic product 
(GDP) per capita from 1986 to 2010 were obtained from 
Hainan Province’s statistical yearbook.24 Temperature 
and rainfall were obtained from the seven local 
meteorological stations in Hainan from 1984 to 2010 
(appendix p 2). The averages of the standard 19 
bioclimatic variables across 1970–2000 were downloaded 
from WorldClim at 340 km² resolution.25 The bioclimatic 
variables were used for hierarchical clustering. To 
process the WorldClim dataset, the average across a 
specific region was calculated with ArcGIS v10.3. Due 
to the seven meteo rological stations in Hainan, the 
temperature data from WorldClim was also downloaded. 
Land use and land cover data in Hainan were derived 
from the annual European Space Agency Climate 
Change Initiative land cover maps with a 300-metre 
spatial resolution.26

Temperature-dependent R0 models
Over the past century, most malaria models of predicting 
optimal transmission were developed under the 
assumption of constant or linear responses of mosquito 
and parasite life-history traits to temperature. However, 
these models often contradicted the field observation. 
With more realistic ecological assumptions, a well 

established temperature-dependent R0 model1 was used 
to evaluate the transmission dynamics of malaria. In 
this model, all mosquito and parasite parameters are 
temperature sensitive.1,3,27,28 

where (T) denotes the established parameter response 
for temperature;5 a is the per day per mosquito biting 
rate (ie, [days to oviposition]–¹); bc is vector competence, 
b represents the proportion of infectious bites that 
infect susceptible humans, and c represents the pro-
portion of bites on infected humans that infect sus-
ceptible mosquitoes; μ is the adult mosquito mortality 
rate (adult mosquito lifespan=1/μ days); PDR is the 
parasite development rate (ie, [days to parasite develop-
ment]–¹); EFD is the number of eggs laid per female per 
day; pEA is the mosquito egg-to-adult survival probability, 
and MDR is the larval mosquito development rate 
(ie, [days to larval mosquito development]–¹); N is the 
human density and T is the temperature, where i is a 
given region and t is the time; and r is the human 
recovery rate (ie, [days to human recovery]–¹). For 
mosquito density at population equilibrium, M(T), 
we used the formula developed by Parham and 
Michael4 and Mordecai and colleagues2,5 as follows: 
M(T)=EFD(T) × pEA(T) × MDR(T)/μ(T)². Finally, the model 
output is scaled between zero and one (ie, R0 was divided 
by the maximum), which could reflect the thermal 
suitability for malaria transmission.

R0,it= ))a(Tit)²bc(Tit)e–μ(T
it
)/PDR(T

it
)EFD(Tit)pEA(Tit)MDR(Tit) 1/2

Nirμ³(Tit)

Panel: Diagnostic criteria for defining the clinically 
diagnosed and laboratory-confirmed malaria cases

The diagnostic criteria of suspected malaria cases (meets 
criterion 1 and 2), clinical malaria cases (meets 
criterion 1, 2, and 3, or 1, 2, and 4), and confirmed malaria 
cases (meets criterion 1, 2, and 5) were identified according 
to the criteria issued by the Chinese Ministry of Health:
1 A person who had resided in malaria-endemic areas 

during the malaria transmission season, or had a history 
of transfusion

2 A person who had clinical symptoms of chills, fever, 
sweating, and other malaria clinical symptoms, occurring 
in periodic attacks; splenomegaly and anaemia might occur 
after multiple attacks for the malaria cases; patients with 
severe malaria might go into shock or have fatal collapse

3 Clinical improvement (eg, no fever and chills) has been 
observed after 3-day antimalarial medication (mainly 
including piperaquine, chloroquine, and primaquine)

4 Positive results of indirect fluorescent antibody test or 
enzyme-linked immunosorbent assay

5 Plasmodium species (including Plasmodium vivax, 
Plasmodium falciparum, Plasmodium malariae, 
or Plasmodium ovale) is found in blood smear

For more on ArcGIS see https://
www.esri.com/en-us/home

https://www.esri.com/en-us/home
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Statistical analysis
To identify whether there are regions that share similar 
patterns of climate or malaria epidemics in Hainan, we 
applied hierarchical clustering to identify regional 
clusters, relying on the squared Euclidian pairwise 
difference between climate time series or malaria time 
series as the distance metric.

To evaluate the effect of temperature and other 
cofactors, we used negative binomial generalised linear 
models on monthly malaria incidence (Y) with 
temperature-depen dent R0, human population size, 
GDP, medication, and area of each land cover. Time 
series analysis was done with the R package MASS.

where i is a given region and t is the time; β, γ1, γ2, δ, ξ, 
and φ are regression coefficients; R0 is the temperature-
dependent R0; Cropland and Grass denote the proportion 
of area of cropland and grassland, respectively; GDP is 
the gross domestic product per capita; and medication 
represents the proportion of the population using 
antimalarial drugs.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
and the decision to publish the report.

Results
During 1984 –2010, more than 180 000 malaria cases were 
reported in Hainan, China, with annual incidence ranging 
from 0·09 to 29·65 cases per 10 000 inhabitants. Among 
laboratory-confirmed cases, P vivax accounted for 
131 425 (70%) of 187 988 cases. Malaria epidemics in 
Hainan occured before the start of the rainy season, 
between April and October, regardless of the magnitude of 
the incidence (figure 1A). In addition to this seasonal 
pattern, the magnitude of malaria incidence differed 
significantly across the island and was positively correlated 
with altitude (r=0·67, p=0·0024; figure 1B). Altitude is 
greatest in the central highland regions, second highest in 
the southern hilly regions, and lowest in the northern 
plain regions. A strong negative correlation was observed 
between rainy season temperature and altitude (r=–0·97, 
p<0·0001; figure 1B), although temperature should be 
decreased with increasing altitude. The negative asso-
ciation was not significant between rainy season rainfall 
and altitude (r=–0·08, p=0·87).

Since malaria in Hainan is structured by geography 
and climate, we also sought to explore the variables that 
might be associated with the intensity of malaria 
transmission on the island. We applied clustering 
method to district-level time series of malaria incidence 
and identified three main geographical regions that 
share similar epidemiological characteristics: northern 
plain regions, central highland regions, and southern 
hilly regions (appendix p 3). We recovered a near-identical 
set of three main regions when this method was applied 
to bioclimatic variables from WorldClim for the same 

Wenchang
Haikou

Qionghai
Lingao

Chengmai
Dingan

Danzhou
Wanning
Tunchang
Lingshui

Dongfang
Sanya

Changjiang
Ledong
Baoting
Baisha

Qiongzhong
Tongshi

January

February
March April

May
June

July

August

September

Octo
ber

November

December

Month

0

2

4

6

In
cid

en
ce

 (1
 p

er
 1

0 
00

0)

Average altitude (metres)

Rainy season 
temperature (°C)

292827262524

6004002000Rainy season

A B

Northern plain regions

Southern hilly regions

Central highland regions

Figure 1: Regions of distinct malaria epidemiology and climate in tropical Hainan, China
(A) Average seasonal incidence of malaria for each district. Districts are ordered by altitude from low (top) to high (bottom). Malaria cases peak during the rainy 
season (May to October). (B) Mean altitude and rainy season temperature (black line) for each district in Hainan. Central highland regions include Tongshi, 
Qiongzhong, Baisha, Changjiang, and Dongfang. Southern hilly regions include Baoting, Ledong, Sanya, Lingshui, Wanning, and Qinghai. Northern plain regions 
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Yit ~ NegBin(μit,θ)

log(μit) = α + βR0,it + γ1Croplandit + γ2Grassit

 + δMedicationit + ξlog(GDPit) + φlog(Popit)
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districts (mutual information 0·58; appendix p 3), 
suggesting that climate and temperature contributes to 
the structure of malaria dynamics on the island. This 
result is robust to the number of climate variables per 
location used (appendix pp 4, 12). By comparing the 
epidemiological and climate clusters, we found that the 
temperature seems to be a key factor (appendix pp 2–3). 
The temperature is affected by the altitude, which affects 
the malaria transmission through the temperature-
sensitive characteristics (eg, biting rate). Climatic factors 
explain the malaria incidence partly. Other factors 
(eg, farming in areas dense with mosquito populations)  
might also contribute to malaria incidence, which can 
cause inconsistency between epidemiological and 
climate clusters for some districts (ie, Dongfang, 
Tongshi, Qionghai, and Baoting).

The analysis found that climatic variables geogra-
phically matched the risk of malaria in Hainan. To 
understand this relationship and to quantify dynamics of 
malaria disease incidence in Hainan, we used a well 
established temperature-dependent R0 model of malaria 
transmission that incorporates the effect of temperature 
on mosquito and parasite traits.5 Following previous 
approaches,5 these trait–temperature relationships were 
estimated by fitting experimental data (appendix p 13). 
All these relationships were unimodal and were used to 
predict the thermal response of malaria transmission. R0 

was maximised at about 25°C (figure 2B). The average 
temperatures of 25–26°C (covering the optimal 
temperature for R0) in the rainy season for the highland 
regions of Hainan promote malaria transmission with 
the observed largest incidence. However, malaria 
incidence declines for the lower altitude districts were 
observed during the rainy season due to higher 
temperatures (exceeding 25°C) than the optimal one 
(figure 1A, B). The difference of daily temperatures from 
1984 to 2010 is shown in the appendix (p 5) with a mean 
value of 7·51°C, and the daily mean temperature figure 
(appendix p 5) with a mean value of 24·23°C. The 
temperature also shows that Hainan is suitable for 
malaria transmission. In general, rainfall has effects on 
malaria transmission. However, rainfall is abundant 
across Hainan during the rainy season. Therefore, the 
effect of rainfall on malaria transmission should be very 
small (appendix pp 6, 15).

This model enabled us to predict the seasonal 
transmission potential of malaria in Hainan from 
monthly mean temperature data. During the dry season, 
the mean monthly temperature decreases from 22°C in 
November to 17°C in January, resulting in an annual 
minimum R0 in winter (figure 2C). Temperatures and 
R0 values rise between February and April, indicating 
increasing thermal suitability for transmission and 
R0 remains high during the rainy season between May 
and October (figure 2C). Crucially, the model predicts 
differences in the magnitude of baseline transmission 
among epidemiological regions, particularly during the 

rainy season (figure 2C). Specifically, mean temperatures 
in the northern plain regions and southern hilly regions 
exceed the thermal optimum and thus relative R0 values 
in those regions are depressed during the summer. In 
contrast, in the central highland regions, temperatures 
remain more suitable for transmission throughout the 
rainy season (figures 1B, 2C), although relative R0 still 
drops during the summer months. These trends can 
explain the observed variation in malaria incidence 
among the three regions in Hainan (figure 2D): with the 
average seasonal incidence for each region (between 1984 
and 2010), human malaria cases are highly correlated 
with temperature-dependent R0 (r=0·75, p<0·0001). In 
addition, we estimated the R0 of the three regions using 
the daily temperature curve; the result is consistent and 
can also explain the difference in the size of three 
different endemic areas (appendix p 7).

In addition to the association between temperature and 
malaria incidence in Hainan, we found that the timing of 
the annual epidemic peak has changed with rising 
temperature. Mean temperatures in Hainan have 
increased by 1·5°C during the past 50 years and the 
minimum temperature has increased by 2°C (appendix 
p 8). Since 1984, when our malaria case data began, the 
timing of the peak in malaria transmission has changed 
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with increasing temperature. The peak timing has 
significantly changed over time (northern plain regions, 
paired sample t test, p=0·020; central highland regions, 
p=0·00056; and southern hilly regions, p=0·11). The 
direction of change in epidemic peak time varies among 
locations. In the central highland regions, the epidemic 
peak has shifted to earlier in the year (from September to 
July) whereas in other regions it shifted to later in the 
year (from July to August or September; figure 3C). This 
change, when placed in the context of our temperature-
dependent R0 model (figure 2C), can be interpreted as a 
consequence of rising mean temperatures. As 
temperatures have risen, optimum conditions for 
transmission in the relatively cooler central highland 
regions have shifted earlier in the rainy season, whereas 
the same rise in low-altitude regions leads to greater 
depression of malaria transmission until the end of the 
rainy season. These patterns empirically show the 
consequences of the non-linear relationship between 
rising temperature and malaria transmission.

The predicted temperature-associated shift in malaria 
transmission across the year is shown in figure 4. A 
rising temperature might facilitate malaria during the 
dry season as conditions become more favourable for 

transmission but can also depress transmission in the 
rainy season because of temperatures exceeding the 
thermal optimum. Sensitivity analyses indicate that 
temperature is a key factor for malaria transmission 
potential in Hainan, especially in the low-altitude region 
(figure 4D). Correspondingly, the number of reported 
malaria cases during winter increased in more recent 
decades in some low-altitude northern plain regions 
(appendix p 9). To further investigate the effect of 
temperature, we used a negative binomial regression to 
analyse how malaria incidence in Hainan varies with 
temperature and other covariates. Malaria incidence 
among epidemiological regions is best explained by a 
model (chosen with the Akaike information criterion) 
that includes temperature-dependent R0, GDP, 
antimalaria drug use, and landscape (including cropland 
and grassland). This model (table) indicates that 
temperature is an important determinant of malaria 
transmission heterogeneity. In the central highland 
regions, the model estimates that a 1°C increase in 
temperature corresponds to a change in cases of –6·5% 
(95% CI –5·2 to –7·7) in the rainy season to 11·9% 
(9·8 to 14·2%) in the dry season. In the southern hilly 
regions, the estimated change in cases ranged from 
–9·2% (–7·6 to –10·9) in the rainy season to 7·0% 
(6·0 to 8·0) in the dry season, and in the northern plain 
regions, it ranged from –5·6% (–4·5 to –6·6) in the rainy 
season to 4·6% (3·7 to 5·5) in the dry season. Estimates 
were obtained with all other covariates set to constant 
values. Malaria incidence in Hainan has decreased in 
recent decades because of socioeconomic development 
and large-scale interventions, such as mass drug 
administration and long-lasting insecticide-treated 
mosquito nets. These measures seem to reduce the 
general magnitude of malaria epidemics rather than the 
spatiotemporal patterns (figure 4E).

Discussion
Long-term trends in malaria incidence are affected by 
land-use change, malaria-control strategies, and drug 
resistance. The Hainan dataset with long time series and 
consistency provides an opportunity to control for 
confounding factors. Furthermore, this context allows us 
to examine the role of temperature in shaping malaria 
heterogeneity in a straightforward way. Our results show 
that long-term temperature rise is linked to, and is a 
likely cause of, changes in malaria incidence across a 
tropical island, with the implication that climate change 
has influenced the current malaria burden. Specifically, 
the seasonality and intensity of malaria in Hainan since 
the 1980s are consistent with the patterns we would 
expect from thermal-response trans mission models. A 
previous study indicated the declining malaria disease 
burden in  response to the rising temperature by 
the predictions.10 Our study reveals a complex inter-
play between temperature and altitude on malaria 
epidemics in Hainan. This highlights the importance of 
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incorporating appropriate non-linear interactions into 
mathematical models for prediction of malaria dynamics.

The model of temperature-dependent malaria 
transmission that we fitted to experimental data better 
explained the magnitude and seasonal activity of malaria 
across all three altitudinal regions of Hainan. Whether 
the predicted dip in relative R0 during the middle of the 
year induces the decrease of malaria incidence is unclear 
and warrants future investigation. A possible explanation 
is that if the highest temperature exceeds the estimated 
optimum of 25°C,5 malaria transmission would be 
restrained. Alternatively, actual temperatures for 
mosquitoes in their natural habitats in Hainan, such as 
forests, livestock sheds, and human residences, might be 
lower than the ambient temperature recorded by 
meteorological stations.

The effect of rising temperature on the spatiotemporal 
distribution of malaria in the central highland regions 
has been documented previously for Ethiopia and 
Colombia.21 By incorporating a model of the thermal 
responses of mosquitoes and parasites, our longitudinal 
data from Hainan yield further insights into malaria 
epidemiology. First, malaria incidence on the island is 
higher in the central highland regions and lower in the 
northern plain regions (for every 100-metre increase in 
altitude, the cumulative incidence increased by 166·2 per 
10 000 residents; appendix p 2), most likely because 
highland temperatures are closer to the optimum for 
transmission than those in the northern plain regions. 
Second, patterns of incidence have changed along with 
rising temperature—ie, transmission is lower in the 
rainy season but higher in the dry season in Hainan. And 
the annual peak incidence appeared earlier in the year in 
the central highland regions but later in the northern 
plain regions. Therefore, our study indicates that 
temperature is an important driver of disease patterns, 
although other socioeconomic factors also influence 
malaria transmission. Similar geographical distribution 
of GDP and population size were observed, and they 
were mainly distributed in low altitude areas (appendix 
p 2), supporting the association.

We also collected malaria cases from 2011 to 2015 for 
Hainan. In total, 63 cases were reported and 53 cases 
were imported. The sample size of local cases was too 
small to support the analysis. Therefore, 2010 was chosen 
as the end of study period. In 2021, WHO declared China 
a malaria-free country after a 70-year effort.29 Key factors 
for success include usage of preventive antimalarial 
medicines, specific treatment, an effort to reduce 
mosquito breeding, the use of insecticide spraying, and 
insecticide-treated nets. Additionally, the 1-3-7 strategy 
was employed, which facilitates fast case reports (within 
1 day), confirming and determining the risk of spread 
(within 3 days), and implementing appropriate measures 
to prevent further spread (within 7 days). The 
1-3-7 strategy should also be helpful for other vector-
borne diseases in China.

There are a few limitations to our study. We assume 
control measures reduce the general magnitude of 
malaria epidemics rather than the spatiotemporal 
patterns. No significant spatial autocorrelation for 
malaria incidence was detected (Moran’s I=0·17, p=0·27). 
Although we assume that the effect of rainfall on malaria 
transmission should be very small (appendix p 6), it is 
possible that rainfall seasonality could, along with control 
measures, regulate malaria transmission patterns. 
However, the parameter estimates from the best model 
indicate that the temperature is significantly associated 
with malaria incidence (appendix pp 14–15), but not for 
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Coefficient (SE) p value

Intercept –7·01 (9·22) 0·45

Population 1·48 (0·75) 0·050

Gross domestic product per capita –0·91 (0·08) <0·0001

Proportion of cropland by area –0·17 (0·04) <0·0001

Proportion of grassland by area 1·49 (0·20) <0·0001

Proportion of the population using antimalarial drugs –0·00 (0·00) 0·11

Temperature-dependent R0 0·16 (0·02) <0·0001

Table: Parameter estimates for the negative binomial regression model
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rainfall in Hainan. We also checked the interaction 
between rainfall and medication. Although the 
interaction is significant, the effect size is quite small in 
Hainan (appendix p 15). The sufficient rainfall might also 
weaken the effect of time lag on malaria transmission. 
The rainfall with a 1-month lag is not significantly related 
to the malaria incidence (appendix p 16). However, the 
temperature with a 1-month lag is still significantly 
associated with incidence. The inter dependencies 
between climate factors and human and mosquito 
habitats might have an effect on malaria incidence. 
Further data are needed to determine the association. 
The current thermal responses we used were generated 
from Anopheles spp (mainly A gambiae, A stephensi and 
Anopheles quadrimaculatus; appendix p 13) and, to our 
knowledge, experimental thermal response data are 
scarce for A minimus and A dirus. However, the seasonal 
proportion of mosquitoes arrested (appendix p 11) and 
the average seasonal incidence of malaria follows the 
similar pattern of temperature-dependent R0. A study in 
Yunnan, China, indicates the biting rate of A minimus is 
highest in August with an average temperature 
of 25·5°C.30 This might indicate the optimal temperature 
of R0 is similar for different Anopheles spp. However, 
experimental data are needed to validate this.

Our study shows that a deeper understanding of the 
interactions between climate change and malaria 
epidemiology are required to optimally inform malaria 
elimination and public health decisions. The findings of 
earlier annual peak incidence in central highland regions 
indicates an earlier response in these regions.
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