
Vol.:(0123456789)1 3

Calcified Tissue International 
https://doi.org/10.1007/s00223-023-01121-z

ORIGINAL RESEARCH

A Machine Learning‑Based Image Segmentation Method to Quantify 
In Vitro Osteoclast Culture Endpoints

Bethan K. Davies1,2 · Andrew P. Hibbert1 · Scott J. Roberts1 · Helen C. Roberts3 · Jennifer C. Tickner4 · 
Gill Holdsworth5 · Timothy R. Arnett1,6 · Isabel R. Orriss1 

Received: 6 June 2023 / Accepted: 29 July 2023 
© The Author(s) 2023

Abstract
Quantification of in vitro osteoclast cultures (e.g. cell number) often relies on manual counting methods. These approaches 
are labour intensive, time consuming and result in substantial inter- and intra-user variability. This study aimed to develop 
and validate an automated workflow to robustly quantify in vitro osteoclast cultures. Using ilastik, a machine learning-based 
image analysis software, images of tartrate resistant acid phosphatase-stained mouse osteoclasts cultured on dentine discs 
were used to train the ilastik-based algorithm. Assessment of algorithm training showed that osteoclast numbers strongly 
correlated between manual- and automatically quantified values (r = 0.87). Osteoclasts were consistently faithfully segmented 
by the model when visually compared to the original reflective light images. The ability of this method to detect changes in 
osteoclast number in response to different treatments was validated using zoledronate, ticagrelor, and co-culture with MCF7 
breast cancer cells. Manual and automated counting methods detected a 70% reduction (p < 0.05) in osteoclast number, when 
cultured with 10 nM zoledronate and a dose-dependent decrease with 1–10 μM ticagrelor (p < 0.05). Co-culture with MCF7 
cells increased osteoclast number by ≥ 50% irrespective of quantification method. Overall, an automated image segmenta-
tion and analysis workflow, which consistently and sensitively identified in vitro osteoclasts, was developed. Advantages of 
this workflow are (1) significantly reduction in user variability of endpoint measurements (93%) and analysis time (80%); 
(2) detection of osteoclasts cultured on different substrates from different species; and (3) easy to use and freely available 
to use along with tutorial resources.
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Introduction

Osteoclasts are multinucleated cells of haematopoietic lin-
eage that resorb bone. Osteoclasts are typically cultured 
in vitro on a variety of physiological (e.g. cortical bone 
slices, dentine discs) or non-physiological (e.g. calcium 
phosphate-coated plates, tissue culture plastic or glass) 
substrates for analysis of cellular physiology, morphology, 
and biochemical endpoints. Typical osteoclast parameters 
measured include tartrate resistant acid phosphatase (TRAP) 
positivity, number, and resorptive activity as well as multi-
nuclearity (≥ 2 nuclei per cell) and actin ring/ruffled bor-
der formation [1–4]. Of these, number and resorption area 
provide valuable data about osteoclast formation and activ-
ity and have historically been manually quantified through 
image-processing softwares such as ImageJ [1]. Whilst this 
method enables user confirmation of individual osteoclasts 
and associated resorption events, it is time consuming, 
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labour intensive and results in substantial intra- and inter-
user variability. Thus, there is a clear need to develop an 
automated method that allows quick, easy, and accurate 
analysis of in vitro osteoclast cultures.

Attempts to automate in vitro endpoint analyses have 
been described but often rely on independent and sequential 
steps of (1) counting osteoclasts; (2) clearing cells from den-
tine/bone discs [1, 5–7]; and (3) separate measurement of the 
resorption area [8, 9]. These processes are time consuming 
and effectively destroy the experiment, preventing revisita-
tion later (e.g. for imaging). Currently, the only attempt to 
simultaneously quantify osteoclasts and bone surface erosion 
has been performed on histological sections [10]. TrapHisto 
is an open-source software integrated into ImageJ that semi-
automates histomorphometric analysis of static and dynamic 
bone turnover parameters, particularly resorption analysis 
[10]. Recent advances mean that new technologies such as 
machine learning (ML) can now be used to develop an auto-
mated workflow for in vitro osteoclast cultures. ML is an 
application of artificial intelligence (AI) where constructed 
mathematical models automatically learn from existing data 
to create an algorithm that produces accurate predictions 
from new observations without being explicitly programmed 
[11, 12]. Supervised ML, such as decision tree algorithms 
and random forest, requires labelled examples from training 
datasets. The algorithm learns from the labelled objects and 
generates a predictive model that accurately sorts new data 
objects into categories [11, 13, 14].

Application of ML methods has improved understanding 
and analysis efficiency of complex biological data and pro-
cesses, especially in genomics, systems biology, and image 
analysis [11, 15, 16]. However, extensive computational and 
mathematical knowledge has historically been required to 
build such ML models, making their application to niche 
biological questions and processes difficult. The develop-
ment of ilastik, a free, open-source supervised ML-based 
bio-image analysis software, has since enabled non-compu-
tationally proficient researchers to develop methodologies 
to rapidly execute complicated image analyses [17]. This 
user-friendly software contains pre-defined workflows that 
are adapted by the operator to create bespoke image analysis 
pipelines whilst completely shielding users from the math-
ematical and computational complexities required to build 
the random forest algorithm [14, 17, 18]. Some applications 
of ilastik include measuring neuronal nuclei and cell bodies 
and osteoblast differentiation from mesenchymal stem cells 
[19, 20].

Historically, automatically quantifying osteoclasts in vitro 
has proven challenging due to the non-uniform cell shape, 
size, and considerable spacing between nuclei and the cyto-
plasm of single osteoclasts [8, 21]. Four recent reports have 
built complex AI-based models to quantify TRAP+ or fluo-
rescently labelled osteoclasts cultured on plastic but not bone 

or dentine [22–25]. Resorption parameters were not quanti-
fied in any of these models [22–25]. To date, ML, specifi-
cally ilastik, has not been applied to simultaneously measure 
osteoclast culture endpoints such as osteoclast number and 
resorption area for cells grown on physiologically relevant 
substrates. Therefore, the aim of this study was to develop 
and validate an automated image segmentation workflow in 
ilastik to reliably, and robustly quantify osteoclast number 
and resorption area in vitro.

Materials and Methods

Reagents

All tissue culture reagents were purchased from Life Tech-
nologies (Paisley, UK), and chemical reagents and MCF7 
cells were purchased from Sigma-Aldrich (Poole, UK), 
unless otherwise stated.

Animals

C57BL/6J mice (Charles River, UK) were group housed 
under standard conditions with free access to food and 
water. All animal procedures complied with the UK Ani-
mals (Scientific Procedures) Act 1986 and were reviewed 
and approved by the Royal Veterinary College Research 
Ethics Committee.

Osteoclast Formation and Resorption Cultures

Mouse Osteoclasts

Osteoclast precursor cells were isolated from the long 
bones of ≥ 6-week-old mice as previously described [1]. 
Basal cell culture medium was Minimum Essential Medium 
supplemented with 10% FCS, 2 mM l-glutamine, 100 U/
mL penicillin, 100 μg/mL streptomycin, and 0.25 μg/mL 
amphotericin (complete mixture abbreviated to MEM). In 
a 96-well tray, cells were seeded onto 5 mm dentine discs 
 (106 cells/disc) in MEM supplemented with 100 nM  PGE2, 
200 ng/mL M-CSF, and 3 ng/mL RANKL (R&D Systems 
Ltd, Abingdon, UK). After 24 h, discs containing adher-
ent osteoclast precursors were transferred to 6-well trays 
(4 discs/well in 4 mL medium) with treatment conditions 
for the duration of culture. Osteoclasts were either treated 
with 10 nM zoledronate (or PBS-vehicle control), 1–10 μM 
ticagrelor (Tocris Bioscience, Abingdon, UK, or a dime-
thyl sulfoxide (DMSO)-vehicle control) or co-cultured with 
MCF7 breast cancer cells on insert plates (10,000 MCF7 
cells per well of a 24-well plate with 1 dentine disc with 
adherent osteoclasts). Culture medium was acidified to pH 
7.0 through addition of 10 MEq/L  H+ (as HCl) for the final 
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48 h to activate osteoclasts to resorb. Dentine discs with 
adherent osteoclasts were fixed in 2.5% glutaraldehyde after 
7–9 days of culture and stained for TRAP activity.

Human Osteoclasts

Human peripheral blood mononuclear cell (PBMC)-
derived osteoclasts were isolated and cultured, as previ-
ously described [7, 26, 27], on dentine discs or tissue culture 
plastic prior to TRAP staining. All protocols were approved 
by University College London Ethics of Human Research 
Committee and the Institutional Review board of the Leuven 
University (ML6195). All work was performed in accord-
ance with the ethical standards as laid down in the 1964 
Declaration of Helsinki and its later amendments.

Image Acquisition and Manual Quantification 
of In Vitro Osteoclast Cultures

TRAP-stained osteoclasts on dentine discs were imaged 
by reflective light microscopy at ×5 magnification using a 
DM400B upright microscope with samples illuminated by 
an EL6000 light source via a partial reflector. Images were 
acquired using a DFC550 colour camera through the Leica 
application suite/LAS-X v3.7 (all from Leica Microsystems, 
UK). Two images (1.3 MPix) were taken per disc and saved 
in TIFF format. All images were acquired with identical set-
tings (saturation value of 50, a gain of 1, gamma of 0.6 and 
a field intensity of 100%) and exposure times (15–20 ms). 
Osteoclast number and the area resorbed per dentine disc 
(using a 16 × 12 grid overlay of 0.08  inches2 area per point, 
a total of ~ 576 points over a whole dentine disc) were 
assessed blind by dot-counting morphometry using ImageJ 
v1.51j8 [28], as previously described [1]. For resorption area 
quantification, the area of the dentine disc is approximately 
19.2  mm2; thus, the area associated with each grid point is 
0.034  mm2. Osteoclast number and resorption area of sam-
ple images (n = 12) were measured three times by user 1 
at 1-year intervals to measure the intra-user coefficient of 
variation (intra-CV). The same images were measured twice 
by user 2 over a 3-year period to calculate the inter-user CV 
(inter-CV).

Algorithm Parameterisation and Training

The pixel classification pipeline in ilastik v1.3.3 [17, 18] was 
used to generate an automated image segmentation of osteo-
clast culture endpoints. Figure 1A summarises the work-
flow employed to train and evaluate the ilastik algorithm. 
Ten reflective light images of TRAP-stained osteoclasts at 
various stages of differentiation and resorptive activity were 
selected as the training dataset. First, TIFF-formatted images 
were converted to the format file “.hdf5” (Hierarchical Data 

Format 5) using the ilastik plug-in in ImageJ [17] and loaded 
into ilastik. All available 2D pixel features (e.g. pixel colour, 
intensity, edge) across all given scales were included to train 
the ilastik model [17]. Pre-osteoclasts (smaller, uniformly 
shaped purple cells in Fig. 1), osteoclasts (larger, non-uni-
formly shaped purple cells, Fig. 1), resorption pits (tan areas 
surrounding osteoclasts, Fig. 1), and dentine disc (white 
background, Fig. 1) classifiers were identified in the training 
images by iterative brush strokes. The respective pixel fea-
tures of these classifiers were computed by ilastik to segment 
images accordingly. It is important to note that users are 
completely shielded from the statistical and computational 
complexities of building the model. Ultimately, researchers 
without computational expertise can utilise ilastik for image 
analysis. Image segmentation predictions were assessed in 
real-time and additional annotations of images were made 
to correct erroneous categorisations. Once image segmenta-
tions were deemed appropriate (i.e. faithfully corresponded 
to the training image), the ilastik protocol was saved as the 
training file for subsequent validation and applied to new 
data without further supervision.

Extraction of Quantitative Data from Automatically 
Segmented Images

The trained ilastik model only outputs segmented images; 
therefore a FIJI, an image-processing package based on 
ImageJ [29], macro was written to combine the application 
of the automated segmentation workflow and extraction of 
quantitative features from each segmented image within the 
command line. The model and associated tutorials are freely 
available through this hyperlink: ILAST IK. Supp. Figure 1 
summarises the macro-workflow and the user input required 
to run the model; this is the only information that users will 
need to enter to run the model. Briefly, raw ‘.TIFF’ images 
are first converted to ‘.hdf5’ format and imported into ilastik 
where the trained classifiers/model are applied to segment 
images. Segmented images are then exported. For ease of 
visualisation, the ‘Glow’ look-up table is applied to each 
segmented image presented in this paper, where each classi-
fier is distinguishable by a particular colour. In this case, pre-
osteoclasts are coloured green, osteoclasts are red, resorption 
events are yellow, and the dentine disc is blue (Figs. 2, 3, 
4). This can be changed by users to suit their preferences or 
visual capacity. To extract the quantitative data, the image 
scale is set to 1 linear pixel equalling 2.031 µm (according to 
the spatial calibration of the microscope lens ×5 objective). 
The total area of each classifier within an image is subse-
quently calculated using the “Analyze particles” function in 
FIJI. A minimum osteoclast size threshold of 825 μm2 was 
determined using Volocity v6.3 (‘ThresholdBySize,’ Perki-
nElmer, Waltham, MA, USA) and applied to the osteoclast 

https://rvcac-my.sharepoint.com/:f:/g/personal/bkdavies_rvc_ac_uk/EhJKsGsP8KdCnLiQFL_zzuEBQD4h53qbU3-n-ys9x7do5w
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classifier to convert the area of osteoclasts per image to a 
discrete numerical value. Measurements are outputted in a 
“.csv” file where resorption area was converted to squared 
millimetres for comparison with manual values.  

Algorithm Validation

The validity of algorithm training was evaluated by pro-
cessing unseen images from osteoclast cultures (n = 48). 
These same images were re-run through the algorithm 

three times over a 1-year period to establish its intra-
variability. Images (n = 6) were rotated at sequential 90° 
angles in ImageJ and processed by the algorithm to estab-
lish whether image orientation alters pixel segmentation. 
Osteoclasts cultured with zoledronate, ticagrelor, or 
MCF7 cells were analysed to determine whether treatment 
effects could be detected by the automated method in the 
same way as manual quantification. Images from human 
osteoclast cultures were tested to establish if the algo-
rithm could be used to quantify osteoclasts derived from 
different species and/or cultured on diverse substrates.

Fig. 1  Developing, training, and validating the algorithm. A Train-
ing data consisting of (1) ×5 reflective light images of TRAP-stained 
osteoclasts were annotated within ilastik to identify osteoclasts, 
resorption events, pre-osteoclasts, and the dentine disc (2). Algorithm 
training was evaluated on new image sets (3A) prior to further vali-
dation on osteoclasts cultured with zoledronate, ticagrelor or MCF7 
cells (3B). Finally, the intra-variability of model was determined by 

re-analysing previously quantified images, alteration of image orien-
tation and measuring osteoclasts cultured from different species and/
or on alternative substrates (3C). B Brushstroke annotation of the 
original reflective light image (i) in ilastik trained the random forest 
model to classify the dentine disc (light blue, ii), pre-osteoclasts (yel-
low, iii), resorption pits (red, iv), and osteoclasts (dark blue, v). Scale 
bar: 200 µm, n = 10
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Fig. 2  The ilastik model reliably detects and segments osteoclasts 
but not resorption events. A Osteoclasts (large purple cells) and 
resorption pits (tan areas) in the original reflective light image are 
segmented by ilastik (red = osteoclasts, yellow = resorption pits, 
green = pre-osteoclasts, blue = dentine disc). Images are representa-
tive of the typical segmentation output. Scale bar: 200 µm. The linear 
relationship between manual and automated quantification methods 
were assessed for osteoclast number (B) and the area resorbed (C). 
The Pearson correlation coefficient, p values, and line of best fit are 
shown. D Absolute osteoclast number was higher by manual quanti-

fication. Data presented as mean ± SEM with points for each training 
image (n = 48), **p < 0.01. Scale bar: 200 µm. E Re-running the same 
images through the algorithm over a 1-year period did not alter osteo-
clast number. F Rotating images at consecutive 90° angles does not 
affect automated osteoclast number quantification, n = 6. G Transmit-
ted and reflective light images show that the model can detect osteo-
clasts of different sizes (illustrated by the black arrows in the micros-
copy images and the white arrows in the ilastik output). Uniform 
TRAP staining is required for appropriate segmentation of very large 
osteoclasts. Scale bar: 200 µm
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Fig. 3  The ilastik model can detect biologically relevant increases 
and decreases in osteoclast number. The algorithm was pharmacolog-
ically validated using two agents with well-characterised inhibitory 
functions (zoledronate) or less well-characterised effects (ticagre-
lor). A, B 10 nM zoledronate and C, D 1–10 μM ticagrelor reduced 
osteoclast number by manual and automated quantification methods. 
E Irrespective of pharmacological agent used, the developed model 
faithfully segmented osteoclasts, but not resorption pits. Co-culture 

with MCF7 breast cancer cells increased osteoclast numbers as quan-
tified through F manual and G automated methods. Data presented as 
mean ± SEM of 3–5 independent experiments, *p < 0.05, **p < 0.01 
and ***p < 0.001. H Osteoclasts, but not resorption pits, were faith-
fully segmented from reflective light images (top row). For all ilas-
tik images: bottom row, red = osteoclasts, yellow = resorption pits, 
green = pre-osteoclasts, blue = dentine disc). Scale bar: 200 µm
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Data Analysis

All data were presented and analysed using GraphPad 
Prism v9.3.1 (San Diego, USA). Data are presented as bar 
graphs with points to show values for individual experi-
ments or box-and-whisker plots with min-to-max values. 

In vitro results show data from 3 to 5 individual experi-
ments; each experiment was performed using osteoclasts 
isolated from different animals. Within each experiment, 
each group contained 6–8 technical replicates. Data were 
analysed using a two-tailed t test or randomised block 
ANOVA with Fisher’s LSD post hoc analysis [30]. Dur-
ing algorithm validation, values obtained from the auto-
mated segmentation were correlated with the correspond-
ing manual quantification output. Both images of the same 
disc were kept independent (i.e. not summed) to observe 
individual trends. The Pearson correlation coefficient and 
simple linear regression analyses were calculated to deter-
mine the linear relationship between both methodologies.

Results

Variable Reproducibility of Manual Quantification 
of In Vitro Osteoclast Cultures

All three parameters (osteoclast number, total area 
resorbed, area resorbed per osteoclast) measured by user 
1 (a PhD student) varied each year with an intra-coeffi-
cient of variation (intra-CV) of 22.1%, 22.3%, and 29.5%, 
respectively (Table 1). There were no differences in the 
measured parameters over time when measured by user 2 
(an experienced researcher). The area resorbed per osteo-
clast varied between users (p < 0.05); measurements were 
1.2-fold higher in user 1 than user 2 with an inter-CV of 
3.3%. There were no differences in osteoclast number nor 
total area resorbed between operators (inter-CVs of 2.4% 
and 1.6%, respectively).

Fig. 4  Human and plastic-cultured osteoclasts are detected by the 
ilastik model. Automated image segmentation identified human 
osteoclasts cultured on dentine discs and plastic-cultured osteoclasts 
compared to original reflective light images (top row). Representative 
images from 48 individual images, red = osteoclasts, yellow = resorp-
tion pits, green = pre-osteoclasts, blue = dentine disc. Scale: 200 µm

Table 1  Example user variation of manual osteoclast culture endpoint analysis

The intra-user coefficient of variance (intra-CV) and inter-user coefficient of variance (inter-CV) of 12 images. Data presented as mean ± SD, 
n = 12 images
CV coefficient of variance
*Statistical difference (p < 0.05) from user 1’s year 3 measurements
# Statistical difference (p < 0.05) from user 1’s year 1 measurements
$ Statistical difference (p < 0.01) from user 1’s year 2 measurements

Intra-variation (user 1, inexperienced researcher) Intra-variation (user 2, experienced researcher) Inter-
variation 
(%)Year 1 Year 2 Year 3 Intra-CV (%) Year 1 Year 3 Intra-CV (%)

Osteoclast 
number

331 ± 89.1 232 ± 109.7# 265 ± 112.5#$ 22.1 304.8 ± 106.8 296.7 ± 110 2.4 9.6

Total area 
resorbed 
 (mm2)

10.0 ± 1.9 9.7 ± 2.0 6.7 ± 2.3#$ 22.3 6.23 ± 2.19 6.24 ± 2.13 1.6 5.8

Area 
resorbed 
per osteo-
clast  (mm2)

0.0308 ± 0.003 0.0458 ± 0.01# 0.0261 ± 0.003#$ 29.5 0.0204 ± 0.001* 0.0212 ± 0.001* 3.3 14.6
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Ilastik Algorithm Parameterisation Faithfully Maps 
the Raw Training Image

During algorithm training, the key features, termed “clas-
sifiers,” in the reflective light images (Fig. 1Bi) were faith-
fully annotated using basic brushstrokes. The classifiers 
generated according to pixel features were the dentine disc 
(light blue, ii), pre-osteoclasts (yellow, iii), resorption pits 
(red, iv), and osteoclasts (dark blue, v).

Segmented Images Produced by the Model are 
Faithful to the Original Image

Osteoclasts and pre-osteoclasts were faithfully segmented 
in images previously unseen by the model (Fig. 2). Osteo-
clast number and total area resorbed strongly correlated 
with manual quantification values (correlation coefficient, 
r, of 0.87 and 0.9, p < 0.001, respectively (Fig. 2B, C). 
Some resorption events were inaccurately segmented in 
discs considered to lack resorption pits by manual analy-
sis (Fig. 2A). Absolute osteoclast number was 25% lower 
in the automated method than manually acquired values 
(p < 0.01, Fig. 2D). Algorithm re-training did not reduce 
the false identification of resorption pits (Supp. Fig. 2). 
Despite the strong positive correlation between manual 
and automated methods, consistent and accurate identifica-
tion of resorption events proved challenging regardless of 
algorithm re-training. The developed model was, therefore, 
further validated to quantify osteoclast cell counts only.

The model can accurately detect osteoclasts of different 
sizes; however, for very large osteoclasts (≥ 100 μm) to be 
accurately segmented, uniform TRAP staining is required 
(Fig. 2G). Big osteoclasts that are unevenly stained are 
not as faithfully segmented as those that are fully TRAP 
stained (Fig. 2G).

Osteoclast Numbers Acquired from the Model are 
Unaffected by Image Orientation

To investigate whether repeated analysis or image ori-
entation impacted the output of the algorithm, images 
were re-analysed over a 1-year period and with a different 
image rotation, respectively. There were no differences in 
osteoclast number upon re-analysis over a 1-year period 
(Fig. 2E). Osteoclast number varied between individual 
discs and was reflective of the experimental conditions. 
This variability was faithfully recapitulated when re-ana-
lysed over a 1-year period. The model intra-CV for osteo-
clast number was 1.5%. Image orientation had no effect on 
the osteoclast number detected by the algorithm (Fig. 2F).

Pharmacological and Physiological Validation 
of the Algorithm

The algorithm was validated by comparing the osteoclast 
numbers obtained from manual and automated analysis in 
osteoclasts exposed to: (1) a known inhibitor of osteoclast 
formation, the bisphosphonate zoledronate; (2) a less well-
defined inhibitor of osteoclasts, the  P2Y12 receptor antago-
nist ticagrelor; and (3) co-culture with MCF7 breast cancer 
cells, which are known to promote osteoclast formation [31, 
32].

Zoledronate

Manual and automated methods respectively detected a 3.6-
fold (p < 0.05) and 3.7-fold (p < 0.01) reduction in osteoclast 
number when treated with 10 nM zoledronate (Fig. 3A, B). 
Mature osteoclasts, pre-osteoclasts, and the dentine disc 
were faithfully segmented (Fig. 3E). Resorption events were 
not robustly detected by the automated method.

Ticagrelor

Both quantification methods detected a dose-dependent 
decrease in osteoclast number. Treatment with 10  μM 
ticagrelor caused a 57% (p < 0.001) and 60% (p < 0.05) 
reduction by manual and automated analysis, respectively 
(Fig. 3C, D). Automated image segmentation accurately 
detected osteoclasts, pre-osteoclasts, and the dentine disc, 
but not resorption area (Fig. 3E).

MCF7 Breast Cancer Cells

Co-culture with MCF7 breast cancer cells caused a 2-fold 
(p = 0.0629) and 1.6-fold (p < 0.05) increase in osteoclast 
number upon when quantified manually and automatically, 
respectively (Fig. 3F, G). Osteoclasts, pre-osteoclasts, and 
the dentine disc, but not resorption area, were faithfully seg-
mented by the ilastik model (Fig. 3H).

The Model can Detect and Quantify Human 
Osteoclasts Cultured on Dentine and Plastic

As the model was developed and validated on mouse bone 
marrow-derived osteoclasts, its flexibility to different spe-
cies and culturing practices was also investigated. First, 
human osteoclasts cultured on dentine discs were reliably 
segmented by the automated method (Fig. 4). The identi-
fication of resorption events by the algorithm was incon-
sistent. Osteoclasts cultured on tissue culture plastic were 
also effectively identified by this method (Fig. 4). However, 
tissue culture plastic background was consistently and incor-
rectly identified as resorption events. Pixels were classified 
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as dentine immediately surrounding the osteoclasts (as illus-
trated by the blue ring surrounding the cells on the ilastik 
output images).

Discussion

In vitro cultures are widely used to study osteoclast biol-
ogy. The unique nature of these cells means that analysis of 
osteoclast culture endpoints is typically performed manually 
and/or involves clearance of osteoclasts from the resorptive 
surface [7, 9]. However, these manual analysis methods are 
time consuming, labour intensive, and subjective. This work 
has utilised freely available software to develop and vali-
date an automatic image segmentation workflow that enables 
quick, accurate, and reproducible quantification of in vitro 
osteoclast culture endpoints. The significant experimental 
advantages of this new method compared to established 
manual techniques are shown in Table 2.

Ilastik, a ML-based imaging software, was trained to 
identify pre-osteoclasts, osteoclasts, resorption pits, and 
the dentine disc. Extensive testing revealed that the algo-
rithm could accurately identify osteoclasts and distinguish 
between pre-osteoclasts and mature cells; however, detec-
tion of resorption pits was less reliable. To determine if 
this approach was sensitive enough to detect increases or 
decreases in osteoclast number, the algorithm was vali-
dated using two pharmacological agents and co-culture 
with MCF7 cells. Treatment with the bisphosphonate, zole-
dronate (10 nM), reduced osteoclast number, irrespective 
of quantification method used. This is consistent with pre-
vious reports that show an inhibitory effect of zoledronate 
on osteoclast number using manual quantification [33–35]. 
Second, osteoclasts were cultured with ticagrelor, a  P2Y12 
receptor antagonist typically used to inhibit platelet aggrega-
tion [36]. Dose-dependent decreases in osteoclast number 

were detected by both manual and automated methods. This 
is in line with an earlier study that also reported a ~ 60% 
reduction in osteoclasts at 10 μM ticagrelor [37]. Finally, 
an increase in osteoclast number was robustly detected by 
the ilastik model upon co-culture with MCF7 breast cancer 
cells. This is consistent with previous reports which show 
that MCF7 cells can promote osteoclastogenesis [31, 32]. 
Taken together, these findings suggest that the developed 
algorithm can be implemented to identify treatment effects 
(inhibitory or stimulatory), address biological questions and 
sensitively quantify subtle differences in osteoclast number.

Although accurate segmentation of bone marrow-derived 
mouse osteoclasts was achieved, absolute osteoclast num-
ber was usually lower than manually obtained values. The 
likely explanation for the absolute differences is the signifi-
cant intra- and inter-variation in manually quantified values 
by operators, preventing the establishment of ground truth. 
Ground truth is a set of measurements that are known to be 
accurate and is used to assess the precision of a developed 
ML model. Operator variability is rarely reported within the 
literature despite manual quantification being the gold stand-
ard for measuring osteoclast parameters in vitro. In histo-
morphometric analyses, Tong et al. reported manual varia-
bility of ≥ 50% when analysing the same histological sample 
on six different occasions even with strictly defined param-
eters [38]. In the current study, intra-variation was assessed 
across 2 users by quantifying the same discs over 2–3 con-
secutive years. Significant differences in the osteoclast num-
ber obtained were observed in user 1 (a PhD student with no 
prior experience quantifying osteoclast culture endpoints), 
but not user 2 (an established researcher with > 20 years’ 
experience of manual osteoclast quantification). This sug-
gests that user experience is likely a major factor influenc-
ing variability. Similarly, minor image modifications (e.g. 
brightness and contrast) to better visualise osteoclasts and 
resorption pits during manual analysis may also contribute 

Table 2  Advantages of using ilastik-based, automated osteoclast endpoint quantitative methods

Manual Ilastik

Intra-user variability High Very low
Inter-user variability High Very low
Training time/experience needed Training 1–2 h 1 h to watch tutorials & install software

Data produced is influenced by user experi-
ence

Data produced not influenced by user experi-
ence

Analysis time: osteoclast number  ~ 5 min/disc  < 1 min/disc
80 disc experiment = ~ 7 h researcher time 80 disc experiment = ~ 5 min researcher time to 

set up workflow then ~ 1 h automated analysis
Sequential number and resorption quantifica-

tion
Yes, but time consuming No, osteoclast number only

Suitable for use with cells grown on plastic 
and dentine

Yes Yes

Applicable to different species Yes Yes
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to user variation. Despite differences in absolute osteoclast 
number, similar trends were reported between users. Conse-
quently, the accuracy of the trained model was estimated by 
qualitative assessment of segmented images and comparing 
treatment responses, rather than absolute numbers, between 
both quantification methods.

The ilastik algorithm variance is 1.5% and represents 
a 93% reduction in user variability for osteoclast number 
compared to the manual method (Table 2). Furthermore, 
no differences in osteoclast number were recorded upon re-
analysis of the same image sets and irrespective of image 
orientation. This highlights the robustness and reliability of 
this new automated osteoclast quantification method which 
can also reduce the inherent analysis variability posed by 
inexperienced users. Similar reductions in user variability 
upon automation of histomorphometric analyses have been 
reported [10, 39–41]. In contrast, the recent AI-based mod-
els quantifying in vitro osteoclasts on plastic did not measure 
improvements in operator variability from manual counting 
methods [22–25]. The ilastik model presented in this study 
requires limited operator input of defined parameters (as 
defined in Supp. Fig. 1B) for image segmentation and no 
algorithm re-training prior to implementation, further lim-
iting the introduction of user variation. It should, however, 
be noted that variability could be introduced should users 
alter the original training file, image scale, or osteoclast 
size threshold from what has been described and optimised. 
Furthermore, image quality (e.g. brightness, staining) can 
impact osteoclast quantification. For example, homogenous 
TRAP staining is essential for accurate image segmentation, 
particularly when quantifying larger osteoclasts. Alterations 
to the pixel features (e.g. colour, brightness, texture, edge) 
modify the random forest decision surface in ilastik for clas-
sifier categorisation [17] which impacts the accuracy of the 
model. Consequently, image settings were optimised here 
to ensure appropriate segmentation of classifiers including 
a defined exposure time range, saturation and gain that are 
applicable across all images and users.

Overall, this user-friendly ilastik model shows that sim-
ple microscopy and staining can be used to robustly detect 
osteoclasts from different species (mouse and human), sam-
ple illumination (reflective light and brightfield) and seed-
ing substrate (dentine disc and plastic) without additional 
re-training of the model. Furthermore, this pipeline reduces 
analysis time by 80% whereby osteoclast number from 1 disc 
is obtained in ~ 1 min compared to ~ 5 min when counted 
manually. Recently, Cohen-Karlik et al. trained a deep ML 
algorithm by manually contouring each cell cultured on 
plastic to classify TRAP-stained pre-osteoclasts, mature 
osteoclasts (3–14 nuclei) and hyper-nucleated osteoclasts 
(≥ 15 nuclei) [22]. Alternatively, Maurin et al. fluorescently 
labelled nuclei, F-actin, and microtubules and used CellPro-
filer™ to automatically segment primary osteoclasts cultured 

on tissue culture plastic [23]. However, unlike ilastik, these 
pipelines are time consuming and reliant on extensive and 
complex mathematical and computational knowledge for 
their manual construction and subsequent re-training for 
individual operators’ pipelines. In contrast, our model is 
quick, easy-to-use, flexible and readily implementable (with 
associated tutorial resources) without any need of classifier 
re-training or mathematical and programming knowledge. 
This represents one of the main advantages of this algorithm 
over other previously reported automated models.

Whilst this model is very effective at measuring osteo-
clast number, further work is necessary to incorporate the 
unique features of osteoclasts (e.g. multinucleation, actin 
ring) into an ilastik workflow for in vitro endpoint analysis. 
For example, although TRAP staining is an excellent way 
of staining osteoclasts, using it to visualise nuclei is more 
problematic, primarily because it is very easy to overstain 
cells. Thus, an alternative staining approach similar to Mau-
rin et al. [23] would be required to identify and quantify the 
number of nuclei per osteoclasts. However, if a new staining 
method was used, an entirely new ilastik model would need 
to be generated, trained and validated.

It is important to emphasise that this ilastik-based model 
has been optimised for in vitro osteoclast cultures, par-
ticularly dentine-cultured osteoclasts. Therefore, the algo-
rithm parameterisation and training required to develop 
this method is specific to these conditions. Although plas-
tic-cultured osteoclasts can be detected by the model, we 
advise that segmented images are reviewed for erroneous 
classification as the model has not been specifically trained 
and optimised to identify plastic-cultured osteoclasts. Fur-
thermore, this model is not readily transferrable to other 
workflows where osteoclast quantification is needed (e.g. 
histology, histomorphometry). In principle, this software can 
be used to construct a new ilastik-based model for analysis 
of tissue sections.

Although the automated segmentation of osteoclasts 
was successful, accurately detecting resorption events 
proved challenging. Resorption pits were reliably identi-
fied in training but not during validation of image sets, 
suggesting that this classifier may be overfitted. Overfitting 
refers to over-specific training of the algorithm that mini-
mises its generalised predictive power when exposed to 
new data. Whilst ilastik operates on minimal brushstroke 
annotations to train classifiers, it was necessary to add 
more brushstrokes to differentiate the pixel features at the 
resorption pit-dentine disc boundary. Similar difficulties 
assessing the resorption boundary have been previously 
reported [42]. Furthermore, the inherent variation between 
primary cultures, TRAP staining and the heterogeneity 
of the dentine disc surface hinders the determination of 
optimal pixel features that can be generalisable. Thus, 
providing more example images to train the ilastik model 
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would be unlikely to improve the sensitivity of resorption 
pit delimitation. Use of a grid overlay to manually quantify 
resorption area remains the gold standard, but grid size 
and area are seldom reported leading to operator variabil-
ity across research centres [43–45]. Semi-automatic meth-
ods are available to analyse resorption area but require the 
removal of cells from the discs, effectively destroying the 
experiment, and still introduces user variability [9, 10, 42]. 
It is, therefore, likely that more complex models, such as 
deep learning (DL), will be required to fully automate the 
simultaneous quantification of both osteoclast number and 
resorptive activity. DL has already successfully quantified 
osteoclast and nuclei numbers [22, 24, 25], but not resorp-
tion events. Due to greater processing layers, DL could 
discover complicated feature patterns in large datasets that 
better delimit the resorption pit-dentine disc boundary for 
osteoclast activity analysis.

In conclusion, a ML-based image segmentation work-
flow successfully identified mature osteoclasts, but not 
resorption events, and significantly reduced user variabil-
ity and analysis time of in vitro endpoint quantification 
by 93% and 80%, respectively. This protocol is flexible 
to deviations in experimental set-up and can be readily 
implemented for standardised osteoclast quantification 
across skeletal research centres. The model and associ-
ated tutorials are freely available and readily implementa-
ble without any additional training or coding knowledge 
through this hyperlink: ILAST IK. Please contact the cor-
responding author if there are any issues accessing the files 
or if there are further questions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00223- 023- 01121-z.
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