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Abstract

Background: Hypoadiponectinaemia is a risk factor for endocrinopathic laminitis, but

the directionality and nature of its association with insulin dysregulation is unclear.

Objectives: To investigate the effects of short-term induced hyperinsulinaemia and

dexamethasone challenge on circulating [total adiponectin] and whole blood expres-

sion of adiponectin (AdipoR1 and AdipoR2), insulin, and insulin-like growth factor

1 (IGF-1) receptors in insulin-sensitive ponies.

Study design: In vivo experiment.

Methods: Six never-laminitic, insulin-sensitive, native-breed UK ponies first underwent

a dexamethasone challenge (0.08 mg/kg i.v.) with blood samples collected every 15 min

over 3 h. After a 14-day washout period, hyperinsulinaemia was induced for 9 h via a

euglycaemic–hyperinsulinaemic clamp (EHC), with blood samples collected every

30 min. Serum [insulin], plasma [total adiponectin], and plasma [IGF-1] were measured

using validated assays and receptor gene expression was assessed via quantitative poly-

merase chain reaction (qPCR). Finally, whole blood was incubated with 10–1000 ng/mL

dexamethasone for 3 h at 37�C to investigate its direct effects on gene expression.

Results: There were no adverse effects observed during either protocol. Dexametha-

sone challenge did not alter circulating [insulin] or [total adiponectin] at any time-

point, but significantly upregulated AdipoR1 and IGF-1R expression at 150 and

180 min. Ex vivo incubation of whole blood with dexamethasone did not alter

expression of the genes examined. There was no change in [total adiponectin] or

expression of the genes examined associated with EHC-induced hyperinsulinemia.

Main limitations: This was a small sample size that included only native-breed ponies;

total adiponectin was measured rather than high-molecular-weight adiponectin.

Conclusions: Short-term induced hyperinsulinaemia and dexamethasone challenge

did not affect circulating [total adiponectin] in insulin-sensitive ponies. However,

dexamethasone administration was associated with upregulation of two receptors

linked to adiponectin signalling, suggesting that a physiological response occurred
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possibly to counteract dexamethasone-associated changes in tissue insulin

sensitivity.
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adiponectin receptors, euglycaemic–hyperinsulinaemic clamp, horse, IGF-1, insulin
dysregulation, insulin resistance

1 | INTRODUCTION

Insulin dysregulation (ID), the key feature of equine metabolic

syndrome (EMS), may manifest as tissue insulin resistance (IR), basal

hyperinsulinaemia, or an excessive insulin response to hydrolysable

carbohydrates.1 Previous studies have shown that continuous infusion

of insulin via a euglycaemic–hyperinsulinaemic clamp (EHC) reliably

causes endocrinopathic laminitis in healthy equids.2,3 Although vari-

ous histological and physiological changes associated with the actions

of insulin have been reported in the lamellae of horses and ponies

having undergone EHC,4–8 the exact mechanisms through which

short-term (48–72 h) hyperinsulinaemia induces laminitis remain

unclear. In addition to ID, adipokine dysregulation is a feature of EMS

that may be present in some animals.9,10 Adiponectin is an insulin-

sensitising adipokine that exists in various isoforms as globular adipo-

nectin or as a full-length monomer that can form large complexes

(high-molecular-weight [HMW] adiponectin).11,12 Hypoadiponectinae-

mia is reported both before and after the development of endocrino-

pathic laminitis. Previously laminitic ponies have lower total

adiponectin concentrations than never-laminitic ponies13 and hypoa-

diponectinaemia was identified as an independent risk factor for the

future development of endocrinopathic laminitis.10,14 However, it is

unclear whether there is a causal relationship between hypoadiponec-

tinaemia and hyperinsulinaemia or other forms of ID.

Tissue IR is the impaired response of a target tissue to secreted

insulin, which may or may not lead to compensatory hyperinsulinae-

mia.15,16 In humans, this can be induced experimentally via administra-

tion of dexamethasone, which decreases glucose oxidation and

uptake in skeletal muscle and adipose tissue, resulting in transient and

reversible tissue IR.17,18 In horses, repeated intravenous administra-

tion of dexamethasone over 21 days resulted in the development of

IR and basal hyperinsulinaemia.19,20 However, the short-term effects

of intravenous dexamethasone administration on adiponectin regula-

tion in equids have not yet been investigated. EHC is a well-

established method used to induce basal hyperinsulinaemia and lami-

nitis in horses.2,3 Previous studies with human participants undergoing

EHC reported both decreases21–23 and increases24 in adiponectin

concentrations, leading to the hypothesis that EHC in ponies would

cause measurable changes in plasma total adiponectin concentrations.

The primary aim of this study was to investigate the effects of

short-term induced hyperinsulinaemia (via EHC) and dexamethasone

challenge (via intravenous administration) on circulating total adipo-

nectin concentrations in never-laminitic, insulin-sensitive, native-

breed ponies. Total adiponectin concentrations were selected for

measurement (rather than specific adiponectin isoforms) using the

only commercial equine adiponectin assay currently available in

the United Kingdom. Although HMW adiponectin is thought to be the

most active form, measurement of total adiponectin is representative

of diagnostic assays currently performed in equine clinical practice in

the United Kingdom.

Cross-talk between insulin and insulin-like growth factor 1 recep-

tor (IGF-1R) is thought to be implicated in the pathogenesis of lamini-

tis through inappropriate stimulation of IGF-1R in lamellar tissue by

excessive insulin concentrations.25–28 In addition, cross-talk is known

to occur between adiponectin and IGF-1R in humans in the context of

cancer,29,30 although this remains to be examined in the horse. There-

fore, it was hypothesised that changes in circulating insulin or total

adiponectin concentrations in response to hyperinsulinaemia and

dexamethasone challenge may be accompanied by changes in the

expression of the associated receptors. Thus, as a secondary aim, the

RNA expression of adiponectin receptors (AdipoR1, AdipoR2, and

T-cadherin), insulin receptor (INSR), and IGF-1R was investigated in

whole blood during each protocol. A further investigation of the direct

effects of corticosteroids on RNA expression from leucocytes was

also undertaken by incubating blood samples with the relevant agent

ex vivo, using methods previously described in human studies.31

2 | MATERIALS AND METHODS

2.1 | Animals

Previous work demonstrated that median total adiponectin concentra-

tions (measured using a validated radioimmunoassay) in normal ponies

are 3.72 (2.55–5.06) μg/mL.10 Using these values, a sample size calcu-

lation assuming 80% power and P = 0.05 was performed using the

University of British Columbia sample size calculator.32 This suggested

that a sample size of six animals would be sufficient to detect a reduc-

tion in [total adiponectin] of 25% or more in association with the

induction of insulin dysregulation using a crossover design.

Six healthy native-breed ponies (two geldings, four mares;

6–18 years) with bodyweights (bwt) of 210–420 kg and ideal body

conditions scores (4.5–5.5/9)33 were therefore recruited to the study.

Ponies had no previous history of laminitis and visual inspection of

the hooves did not reveal any abnormalities consistent with previous

episodes of laminitis. Animals also had normal basal insulin concentra-

tions (mean ± SD = 2.92 ± 1.91 μIU/mL; measured on Immulite

2000 xpi) and normal insulin responses (29.36 ± 20.56 μIU/mL) to an
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oral sugar test performed with 0.45 mL/kg Karo light corn syrup.34 No

further dynamic insulin sensitivity testing was performed

(e.g., combined glucose/insulin test [CGIT] or frequently sampled

insulin-modified intravenous glucose tolerance test [FSIGTT]) before

recruitment to the study. Adrenocorticotropic hormone concentra-

tions (ACTH) were measured in animals aged >10 years and were

within the season-adjusted reference range.35 Animals showed no

clinical signs of PPID or EMS.

Ponies were kept at pasture with access to sufficient grazing to

maintain ideal bodyweight before and throughout the study period.

Each pony underwent both administration of dexamethasone and

EHC (to induce short-term hyperinsulinaemia), in this order with a

14-day washout period between protocols. Ponies were housed in

pairs in separate but adjoining stables allowing physical contact during

both procedures and had free access to hay and water throughout.

Animals were not restrained in stocks during either protocol.

2.2 | Protocol 1: Dexamethasone challenge

A catheter (14-gauge, Milacath) was inserted into one jugular vein

under local anaesthesia (2% lignocaine) and sutured in place. This

catheter was used to administer dexamethasone (0.08 mg/kg bwt i.v.)

and collect blood samples (10 mL) every 15 min over 3 h into both

plain tubes (for serum) and EDTA-coated tubes (for plasma) to mea-

sure [insulin], [total adiponectin], and [IGF-1].

2.3 | Ex vivo stimulation of whole blood with
dexamethasone

Residual samples from whole blood samples in EDTA tubes obtained

from three of the ponies taken at time zero were taken to the lab

within 1 h of collection. Each sample was aliquoted (500 μL) into

four clean polypropylene tubes and incubated with 10, 100, or

1000 ng/mL dexamethasone or vehicle only (control) for 3 h at 37�C

in a waterbath with gentle agitation. Samples were then immediately

processed for measurement of gene expression via quantitative poly-

merase chain reaction (qPCR).

2.4 | Protocol 2:
Euglycaemic–hyperinsulinaemic clamp

The method used was based on the EHC procedure by DeFronzo

et al.36 Briefly, bilateral jugular vein catheters were placed under local

anaesthesia (2% lignocaine) and sutured in place. One catheter was

used to administer insulin and glucose and the other was used to col-

lect blood samples. Three baseline blood samples (10 mL each) were

collected at 10-min intervals before the start of the infusions and

results were averaged to determine mean basal glucose and insulin

concentrations. A priming dose of insulin (Actrapid, Novo Nordisk;

45 μiU/kg bwt in 50 mL 0.9% saline) was administered as a bolus

injection over 60 s.36 The insulin infusion was then started at a steady

rate of 6 μiU/min/kg bwt, which was maintained throughout the

study. An infusion of glucose solution (50% w/v; Baxter) was also

started at a rate of 24.0 mmol/min/kg bwt. Blood samples (1 mL)

were collected every 5 min to monitor glucose concentrations, using a

handheld glucometer (Accu-Chek Aviva 2, Roche) validated for equine

samples,37 until euglycaemia was reached (defined as blood glucose

concentration maintained at 5.0 ± 1.0 mmol/L for 30 min without

adjusting the infusion rate). Once in steady state, blood glucose con-

centrations were monitored every 30 min for 9 h and the glucose

infusion rate was adjusted as necessary to maintain euglycaemia. Dur-

ing steady state, blood samples were collected every 30 min to mea-

sure [insulin] and [total adiponectin].

2.5 | Measurement of blood analytes

Blood samples were aliquoted into plain tubes and left to clot at room

temperature for at least 30 min before centrifuging at 3000g for 5 min

to obtain serum. Blood samples aliquoted into EDTA-coated tubes

were inverted several times and placed on ice before centrifuging at

500g for 5 min to obtain plasma. Serum [insulin] and plasma [total adi-

ponectin] were determined using automated commercial assays previ-

ously validated for horses at Liphook Equine Hospital Laboratory

(Liphook, UK).14,34,38 [IGF-1] was measured using an ELISA

(Mediagnost) that was previously validated for use in equine plasma.10

IGF-1 concentrations were not measured in samples from protocol

2 to avoid duplicating previous work.25

Data were assessed visually using histograms and a Shapiro–Wilk

test was used. Data were approximately normally distributed. Analyte

concentrations at each timepoint were compared with those at base-

line using a repeated measures ANOVA, followed by Dunnett post

hoc test. To determine differences between ponies, concentrations

were compared using ANOVA followed by Tukey post hoc test com-

paring all ponies to each other. A mixed-effects model was used

instead of ANOVA if there were any missing values, followed by Dun-

nett post hoc test. Geisser–Greenhouse correction was applied in

cases where sphericity was violated. Analyses were performed using

Prism v9.1.2 (GraphPad). Significance was accepted at P ≤ 0.05.

2.6 | Measurement of gene expression using qPCR

Whole blood samples in EDTA tubes were stored at 4�C overnight

before total RNA extraction using a PureLink™ RNA mini kit (Thermo

Fisher Scientific), according to the manufacturer's instructions. RNA

concentration and purity were assessed using a DS-11 Spectropho-

tometer (DeNovix) and cDNA was synthesised using a High-capacity

RNA-to-cDNA™ kit (Thermo Fisher Scientific). Each reaction con-

tained 10 μL RT buffer mix, 1 μL RT enzyme mix, 2 μg RNA template,

and 7 μL PCR-grade water and the reaction proceeded in a thermocy-

cler (SensoQuest) with the following protocol: 37�C, 60 min; 95�C,

5 min. cDNA was stored at �80�C until qPCR analysis.
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qPCR was performed using the following TaqMan Gene Expres-

sion Assays (Thermo Fisher Scientific): AdipoR1, Ec01114954_m1;

AdipoR2, Ec04320052_m1; T-cadherin, Ec03469102_m1; INSR,

Ec04330427_m1; IGF-1R, Ec04330618_m1; GAPDH,

Ec03210916_gH; β-actin, Ec04176172_gH. GAPDH and β-actin were

included as housekeeping genes for normalisation and were duplexed
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measured over 3 h after administration of dexamethasone (0.08 mg/kg via intravenous administration). A, C, E, mean concentrations ± SD for n = 6; B,
D, F, concentrations for individual animals numbered 1–6.
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to each target gene. Reactions (20 μL) comprised 10 μL TaqMan™

Fast Advanced Master Mix (Thermo Fisher Scientific), 1 μL of each

gene expression assay (target and housekeeping gene), 6 μL PCR-

grade water, and 2 μL template cDNA, and proceeded in a Bio-

Rad CFX96 Touch Real-time PCR Detection System (Bio-Rad). Ini-

tial enzyme activation proceeded over 20 s at 95�C followed by

40 amplification cycles (denature: 3 s at 95�C, anneal: 30 s at

60�C). No-template negative controls containing water instead of

cDNA were included in each qPCR run.

Expression of the target genes was normalised to that of GAPDH

and β-actin using the 2�ΔΔCt method.39 RNA expression was

expressed as log2 fold-expression relative to that at baseline. Expres-

sion at each timepoint was compared with that at baseline for each

pony using a repeated measures ANOVA, followed by Dunnett post

hoc test using GraphPad Prism v9.1.2. Significance was accepted

at P ≤ 0.05.

3 | RESULTS

3.1 | Animal experience

There were no adverse effects observed during or as a result of either

protocol.

3.2 | Protocol 1: Dexamethasone challenge

3.2.1 | Blood analyte concentrations

There were no significant changes in serum insulin, plasma total adi-

ponectin, or plasma IGF-1 concentrations measured over 3 h after

dexamethasone administration compared with baseline (Figure 1).

3.2.2 | Gene expression

AdipoR1 and IGF-1R expression were significantly upregulated at

150 and 180 min after dexamethasone administration compared with

that at baseline (Figure 2). There was no significant change in the

expression of AdipoR2 or INSR (data not shown). The RNA expression

of T-cadherin was undetectable in any of the samples collected.

3.2.3 | In vivo stimulation of whole blood with
dexamethasone

There was no significant change in the RNA expression of AdipoR1 or

IGF-1R in whole blood after 3 h incubation with 10–1000 ng/mL

dexamethasone (Figure 3).
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3.3 | Protocol 2:
Euglycaemic–hyperinsulinaemic clamp

The mean ± standard deviation (SD) basal serum insulin concentration

was 14.1 ± 6.8 μIU/mL. During the infusion, the mean ± SD steady-

state insulin concentration reached was 544.2 ± 92.4 μIU/mL

(Figure 4A,B). The overall maximum insulin concentration reached was

1500 μIU/mL and the mean ± SD maximum concentration for all

ponies was 859.3 ± 316.4 μIU/mL. Plasma total adiponectin concen-

trations did not change significantly compared with baseline

(Figure 4C,D).

In addition, there was no significant difference in the RNA expres-

sion of AdipoR1, AdipoR2, IGF-1R, or INSR during EHC compared

with that at baseline (data not shown). Expression of T-cadherin was

undetectable in equine whole blood.

4 | DISCUSSION

Circulating insulin concentrations were unchanged for up to 3 h fol-

lowing intravenous dexamethasone challenge in insulin-sensitive

ponies. In humans, dexamethasone administration is reported to cause

reversible IR, hyperinsulinaemia, and impaired glucose tolerance.17,18

In previous studies conducted with Standardbred horses, repeated

administration of dexamethasone over 21 days led to reduced insulin

sensitivity and increased serum insulin concentrations.19,20 In addi-

tion, a previous study showed that serum insulin concentrations

increased 19 h after intramuscular administration of 0.04 mg/kg

(overnight dexamethasone suppression test).40 It is likely that adminis-

tration of a single dose of dexamethasone in the present study was

insufficient to increase insulin secretion, or that physiological changes

induced by dexamethasone and subsequent tissue IR may take longer
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than 3 h to manifest as increased insulin concentrations in circulation.

Indeed, previous research in horses showed that insulin concentra-

tions peaked 24 h after intravenous administration of the glucocorti-

coid triamcinolone acetonide.41 In the present study, changes in

insulin response may have occurred at the tissue level, although this

was not investigated as it would have required more invasive sampling

such as skeletal muscle tissue biopsy. To confirm the induction of tis-

sue IR, the inclusion of dynamic insulin sensitivity tests, such as CGIT

or FSIGTT, should be considered in future studies.

In rats, repeated dexamethasone administration over 3 days

decreased serum adiponectin concentrations.42 In humans, repeated

dexamethasone treatment over 4 days increased total and HMW adi-

ponectin concentrations.43 There are no previous reports of the

short-term effects of dexamethasone on adiponectin concentrations

in ponies. However, a single dose of dexamethasone did not cause

any changes in circulating total adiponectin concentrations in the pre-

sent study. It is possible that the sampling period of 3 h may have

been too short to observe changes in circulating adiponectin concen-

trations, as the effect of sampling time would be dependent on the

clearance rate and half-life of adiponectin in equine plasma. If adipo-

nectin secretion from adipocytes was reduced, its rate of removal

from the circulation would determine how quickly the reduction in

secretion would become apparent when measuring circulating

concentrations. There are currently no data available regarding the

half-life or clearance rate of adiponectin in equids. Results from the

present study indicate that administration of a single dose of dexa-

methasone to healthy, insulin-sensitive ponies does not lead to mea-

surable changes in either insulin or total adiponectin concentrations

up to and including 3 h following.

In contrast, differences in AdipoR1 and IGF-1R gene expression

were observed in response to dexamethasone administration. To con-

firm that these changes were not associated with the direct effect of

dexamethasone on circulating leucocytes, whole blood was incubated

with dexamethasone at concentrations similar to those expected after

intravenous administration of 0.08 mg/kg dexamethasone.44 There

was no change in the expression of AdipoR1 or IGF-1R in response to

dexamethasone treatment of ex vivo whole blood. Upregulation of

these two genes may therefore be associated with the systemic

effects of dexamethasone. Alternatively, this may be due to natural

variation in the expression of AdipoR1 and IGF-1R related to the cir-

cadian rhythm. The expression of AdipoR1 (and AdipoR2) is subject to

diurnal variation in human adipose tissue45 and in mouse liver and adi-

pose tissue,46,47 but there are no previous reports of circadian varia-

tion in the expression of AdipoR1 and IGF-1R in equine whole blood.

Furthermore, the sampling period was only 3 h and it is unlikely that

the significant changes in expression observed would be due to nor-

mal diurnal variation.

Our results therefore indicate that administration of dexametha-

sone causes upregulation of both AdipoR1 and IGF-1R in the short

term, which may be associated with changes in insulin sensitivity.

Upregulation of a receptor would be expected if the associated ligand

was downregulated. Upregulation of AdipoR1, which is the main

receptor for globular adiponectin,48 may therefore suggest changes in

globular adiponectin production in adipocytes, although this may not

have been evident when measuring plasma total adiponectin and

would require further investigation. Total adiponectin was measured

in the present study and changes in the composition of adiponectin

isoforms were not investigated as no validated assay is currently avail-

able in the United Kingdom to measure these.

This is the first study to investigate the expression of adiponectin,

insulin, and IGF-1 receptors in equine blood, a convenient sample that

can be obtained easily via minimally invasive jugular venepuncture.

The expression of adiponectin receptors in subsets of peripheral

immune cells has previously been investigated in humans.49 Studies in

human subjects have also reported the differential expression of Adi-

poR1, AdipoR2, and T-cadherin (a non-classical receptor for full-length

adiponectin) in specific populations of peripheral blood mononuclear

cells and its association with immune deficiencies.50 The expression

of AdipoR1 and AdipoR2 was also investigated in peripheral mono-

cytes in obese and overweight patients with coronary artery disease51

and in leucocytes in children with hypertension52 and obesity.53

Human studies have therefore shown a relationship between circulat-

ing adiponectin concentrations in the blood, the expression on adipo-

nectin receptors on immune cells, and various disease states. As this

has not yet been investigated in the horse, it is a novel and interesting

research lead in equine metabolic syndrome. In the present study, we

describe reproducible methods for the measurement of gene expres-

sion in the blood. This includes the use of commercially available

primers and probes, which were selected to facilitate standardisation

and reproducibility for future use by other researchers. However, it

must be noted that changes in RNA expression do not necessarily

imply changes in protein expression, which was not investigated here.

Furthermore, there are very few data regarding the relationship

between the expression of adiponectin receptors in human blood

(peripheral leucocytes) and other tissues (such as adipose or liver tis-

sue) or cell types54 and this is yet to be investigated in the horse.

Next, hyperinsulinaemia was induced for 9 h via EHC, with the

hypothesis that adiponectin concentrations would change in response

to steady-state hyperinsulinaemia. In contrast to previous results from

human subjects, the present study showed that EHC-induced hyperin-

sulinaemia did not cause any changes in total adiponectin concentra-

tions in ponies. Human studies have reported both increased and

decreased adiponectin concentrations in subjects undergoing EHC,

likely due to differences in the participants' health status

(e.g., presence of obesity and type 2 diabetes mellitus). Indeed, EHC-

induced hyperinsulinaemia caused a decrease in total adiponectin con-

centrations in lean but not in obese individuals.24 Another study con-

ducted in human subjects reported differences in the concentrations

of different adiponectin isoforms in diabetic patients.23 HMW adipo-

nectin concentrations were specifically decreased during EHC

whereas other adiponectin isoforms were unaffected.23 There are

several potential reasons for the differences in observations reported

in humans and ponies, including methodological differences relating

to the sampling period (9 h in the present study vs. 3.5–7 h in previ-

ous studies with human subjects22–24) and the form of adiponectin

measured (total vs. HMW adiponectin).
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Previous studies have reported hypoadiponectinaemia both

before10 and after13 the advent of laminitis, indicating this observation

may be both a risk factor for and a consequence of laminitis. However,

the results from the present study indicate that hypoadiponectinaemia

is not directly caused by short-term tissue IR or hyperinsulinaemia. The

relationship between adiponectin and insulin appears to be bi-

directional, as a previous study showed that increasing HMW adiponec-

tin concentrations in equids via treatment with pioglitazone also

decreased insulin concentrations in response to an oral sugar test.55

Similarly, dietary supplementation with resveratrol and leucine increased

HMW adiponectin concentrations and decreased both basal and post-

prandial insulin concentrations.56 The relationship between adiponectin

and insulin sensitivity is undoubtedly complex in the whole animal and

involves multiple feedback systems that may be influenced by chronic

conditions such as obesity and IR. The approach used in the present

study involved only very defined and limited interventions, which would

have reduced the impact of some of these other factors. It is, therefore,

important to acknowledge that a whole systems approach in which the

entire insulin–adiponectin system is investigated and modelled would

produce a more complete picture of the in vivo situation.

This study has several limitations, not least the small sample size

and the fact that only native UK pony breeds were represented.

Although these ponies were purposefully selected to represent the

most common breeds affected by EMS and laminitis in

the United Kingdom, this does limit the applicability of findings to other

study populations. Furthermore, these ponies were healthy, insulin-

sensitive, and had no previous history of laminitis. The aim of the study

was to examine the effect of administration of a physiological antago-

nist to insulin on adiponectin in normal, healthy ponies and the inclu-

sion of ponies with pre-existing insulin dysregulation would not have

been representative of the normal physiological response to insulin

antagonism. In addition, these inclusion criteria were used to reduce

the risk of inducing laminitis during study protocols. However, this does

mean that findings may not be generalisable to equids with insulin dys-

regulation or previous episodes of laminitis, or to horses as this study

was conducted in ponies specifically. In addition, only total adiponectin

was measured, rather than specific isoforms. HMW adiponectin is con-

sidered the most biologically active form, although little is known about

the roles and functions of other adiponectin isoforms in the horse.

Although validated assays are available in other countries to measure

equine HMW adiponectin, these are not available in the

United Kingdom. Therefore, the only assay available to the authors was

an immunoturbidimetric assay (offered and validated in-house by Lip-

hook Equine Hospital), which measures total adiponectin. Ideally, this

study would have included the determination of [total adiponectin] and

adiponectin sub-fractions, including [HMW adiponectin].

In conclusion, short-term induced hyperinsulinaemia and dexa-

methasone challenge did not affect circulating total adiponectin con-

centrations in healthy, insulin-sensitive ponies. However, intravenous

dexamethasone administration was associated with upregulation of Adi-

poR1 and IGF-1R, two receptors linked to adiponectin signalling, which

may suggest a physiological response aiming to increase tissue sensitiv-

ity to adiponectin. Hypoadiponectinaemia does not appear to be a

direct consequence of short-term hyperinsulinaemia or dexamethasone

administration, but the effect of longer-term ID and the third form of

ID (excessive insulin responses to non-structural carbohydrates) on adi-

ponectin signalling, as well as the distribution of different adiponectin

isoforms and their response to insulin, requires further research.
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