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Abstract: Using DNA methylation profiles (n=15,456) from 348 mammalian species, we 

constructed phyloepigenetic trees that bear remarkable similarities to traditional phylogenetic ones. 

Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of 

which 30 are related to traits such as maximum lifespan, adult weight, age, sex, and human 

mortality risk. Maximum lifespan is associated with methylation levels in HOX genes, 

developmental processes, and potentially regulated by pluripotency transcription factors. The 

methylation state of some modules responds to perturbations such as caloric restriction, ablation 

of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. 

This study reveals an intertwined evolution of the genome and epigenome that mediates the 

biological characteristics and traits of different mammalian species.  

 

One-Sentence Summary: Phyloepigenetic trees, derived from DNA methylation profiles, mirror 

mammalian evolution, and are related to mammalian lifespan and other species characteristics. 

     Main Text:  

Comparative epigenomics is a burgeoning field that integrates epigenetic signatures with 

phylogenetic relationships to decipher gene-to-trait functions {Xiao, 2012 #307;Villar, 2015 

#306;Qu, 2018 #436}. Prior research has investigated the capacity of DNA methylation patterns 

in regulatory sequences to reflect evolutionary relationships among species {Qu, 2018 

#436;Klughammer, 2023 #822}. A recent study compared methylation data across multiple animal 

species at orthologous gene promoters using a sequencing-based assay that did not specifically 

target conserved CpGs {Klughammer, 2023 #822}. Previous investigations faced limitations 

regarding the measurement platform, particularly the low sequencing depth at conserved CpGs 

and the sample size per species. 

Our study overcomes these constraints in several ways. First, we utilized a measurement platform 

ensuring high sequencing depth at conserved CpGs, allowing for a more precise analysis of DNA 

methylation patterns in highly conserved DNA regions. Second, we increased the sample size per 

species, aiming for around 30 samples. We profiled 348 species from 25 of the 26 mammalian 

taxonomic orders. This comprehensive dataset enables examination of phylogenetic relationships, 

mailto:shorvath@mednet.ucla.edu
mailto:ahaghani@altoslabs.com
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co-methylation relationships between cytosines, and their associations with maximum lifespan and 

other species characteristics. 

We profiled 15,456 samples (Fig. 1A; table S1) using a methylation array platform that provides 

effective sequencing depth at highly conserved CpGs across mammalian species {Arneson, 2022 

#722}. This dataset is the product of the multi-national Mammalian Methylation Consortium. In 

previous studies, we applied supervised machine learning methods to generate DNA methylation-

based predictors of age, called epigenetic clocks, for numerous species {Parsons, 2023 #830;Lu, 

2021 #744;Kordowitzki, 2021 #426;Prado, 2021 #743;Robeck, 2021 #740;Larison, 2021 

#747;Mozhui, 2022 #813;Sugrue, 2021 #558;Robeck, 2021 #741;Horvath, 2022 #719;Horvath, 

2022 #800;Horvath, 2021 #751;Horvath, 2021 #750;Jasinska, 2021 #749;Raj, 2021 

#742;Schachtschneider, 2021 #739;Cossette, 2023 #799;Lemaitre, 2022 #746;Horvath, 2022 

#721;Wilkinson, 2021 #736;Wilkinson, 2021 #737;Horvath, 2022 #720;Pinho, 2022 

#728;Horvath, 2022 #725;Peters, 2022 #815;Chiavellini, 2022 #816}.  

Here, we perform a large-scale cross-species unsupervised analysis of the entire dataset to reveal 

the relationship of DNA methylation (DNAm) with mammalian phylogeny. We show that we can 

construct phyloepigenetic trees that parallel traditional phylogenetic ones. We then proceed to 

interrogate the extent to which DNA methylation underpins specific biological traits by employing 

unsupervised weighted correlation network analysis (WGCNA) to minimize the influence of bias 

on our observations. This approach identifies clusters of co-methylated CpGs (co-methylation 

modules) that are associated with species characteristics, including taxonomy, tissue type, sex, 

lifespan, and aging.  

 

Results: 

Evolution and DNA methylation 

We generated a dataset consisting of DNA methylation profiles of 15,456 DNA samples derived 

from 70 tissue types, from 348 mammalian species using the mammalian methylation array 

{Arneson, 2022 #722}. We evaluated whether methylation levels of cytosines (CpGs) in DNA 

sequences that are conserved across species would allow us to construct what could be termed a 

phyloepigenetic tree. To avoid potential confounding by different tissue types, we generated 

tissue-specific phyloepigenetic trees (Fig. 1B; fig. S2; fig. S3). We defined the ‘Congruence’ 

between traditional phylogenetic trees and phyloepigenetic trees as the Pearson correlation 

coefficient between distances (branch length) based on phyloepigenetic trees and evolutionary 

distances in traditional phylogenetic trees. We observe high congruence (Congruence=0.93, Fig. 

1C; fig. S2) for the blood-based phyloepigenetic tree (124 species), and lower congruence values 

for non-blood tissues (Congruence=0.58 for liver and Congruence=0.72 for skin, fig. S2). The 

lower congruence in liver (158 species) and skin (133 species) may be due to potential variability 

in sampling between species. The varying congruence across tissue types shows that the CpG 

probes do not serve as genotyping proxies. The tissue dependence of congruence indicates that 

phyloepigenetic trees are derived based on differences in methylation levels and not sequence 

conservation. This point is also corroborated by three sensitivity analyses, which confirmed that 

the high congruence was indeed due to differences in methylation levels (supplementary text). In 

particular, the phyloepigenetic trees based on the 180 CpGs with the most significant detection p 

values across all 348 species still are congruent with traditional trees (fig. S2F-G).  



 

 

7 

 

 

 

In order to identify CpGs that exhibit a pronounced phylogenetic signal in relation to methylation 

and phylogenetic trees, we utilized Blomberg's K statistic {Blomberg, 2003 #826}. Among the top 

500 CpGs showing significant phylogenetic signals (nominal Blomberg p < 0.001, additionally 

selected by variance z-score), we observed an enrichment in upstream intergenic regions (odds 

ratio OR = 1.4, Fisher exact p < 0.05, fig. S4B). To further investigate regions with the strongest 

phylogenetic signal, we divided the data into groups of 10 CpGs relative to the transcriptional start 

site (TSS). This analysis also confirmed that intergenic regions exhibit significant phylogenetic 

signals (OR > 3, Fisher exact p < 0.05), while the promoter regions did not show such signals (Fig. 

1D). 

DNA methylation networks relate to individual and species traits 

We used signed weighted correlation network analysis (WGCNA, an unsupervised analysis) 

{Langfelder, 2008 #31} to cluster CpGs with similar methylation dynamics across samples into 

co-methylation modules. We then summarized their methylation profiles as "module eigengenes". 

The respective eigengenes of these modules were used to identify their potential correlations with 

various traits within and across mammalian species.  

Our data analysis proceeded in two sequential phases. First, we developed several co-methylation 

networks using data from 11,099 DNA samples from 174 species (discovery dataset, finalized 

March 2021). A eutherian network (Net1) was formed from 14,705 conserved CpGs using this 

dataset (Fig. 2A). Later (March 2022), we generated a second data set of 4,357 samples from 30 

tissues of 240 mammalian species (174 new species, and 66 that are represented in the discovery 

set), which were not used to define modules and were used as an independent validation set. All 

the eutherian modules were present in the independent validation dataset according to module 

preservation statistics (corKME) {Langfelder, 2011 #586}, validating the presence of these 

modules (corKME>0.43, p<10-22; median corKME=0.84) (fig. S5). These modules were 

designated with colors according to the WGCNA convention (Fig. 2A). The smallest module 

(lavenderblush3) consisted of 33 CpGs, while the largest (turquoise) had 1,864 CpGs.  

To characterize the 55 modules with respect to species characteristics (e.g., maximum lifespan and 

average adult weight), module eigengenes were calculated in all samples (discovery and validation 

set combined, 331 eutherian species). As information on taxonomic order, tissues, maximum 

lifespan, age, sex and adult weight of each species were available, we were able to assess whether 

any of the module eigengenes correlated with these traits. Of the 55 modules, 30 were found to be 

correlated with at least one trait (Fig. 2B; fig. S7; table S3). Specifically, 15 modules were related 

to taxonomic orders such as primates, rodents, or carnivores (Fig. 2B; see also fig. S11). Ten 

modules related to tissue type (fig. S11), while two were related to sex (fig. S11), one to age, seven 

modules to maximum lifespan, and four to average adult species weight. Some modules were 

related to multiple characteristics. In the following sections, we mainly focus on the modules that 

relate to mammalian maximum lifespan, adult weight, and age. Other modules (related to 

taxonomic order, tissue type, or sex) are described in the supplement (fig. S11). We performed 

two analyses to ascertain whether these eutherian modules are also applicable to marsupials and 

monotremes. First, we trained a network (Net2) in both eutherians and marsupials based on only 

7,956 probes that are mappable to both. The color bands underneath the hierarchical tree reveal 

that all the Net1 modules were also preserved in Net2 (Fig. 2A). Second, we selected CpGs in 

Net1 modules that are also mapped to marsupials or monotremes and confirmed that their 

eigengene relationships to primary traits were retained in these mammalian clades (table S3). For 

example, the magenta module, which is related to blood in eutherians, was also found to be so in 
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monotremes (table S3), which confirms that the Net1 modules can indeed be applied to other 

mammalian clades, by selecting probes that are also mapped to those clades.   

A functional enrichment study, accounting for the mammalian array background, revealed that the 

500 most interconnected CpGs per module neighboring genes are implicated in many biological 

processes including development, immune function, metabolism, reproduction, stem cell biology, 

stress responses, aging, and various signaling pathways (Fig. 2C, fig. S9).  

Relationship with protein-protein interactions 

We examined whether the proteins encoded by cognate genes (closest to respective CpGs) within 

modules are known to mutually interact or predicted to do so by STRING protein-protein 

interaction networks, which integrate known and predicted protein associations from over 14,000 

organisms {Szklarczyk, 2021 #595}. A permutation test analysis evaluating the global cluster 

coefficient {Barrat, 2004 #819} of each module showed that 14 modules are significantly enriched 

(p<0.001) for genes encoding mutually interacting proteins (Fig. 2D). Overall, these results 

suggest that co-methylation relationships can be reflected at the protein level for a subset of 

modules. 

Modules related to maximum lifespan 

To adjust for potential confounders, we used four regression modeling approaches to identify  

modules that are associated with log transformed maximum lifespan (dependent variable): 1) a 

univariate regression model whose covariate was the module eigengene (averaged per species), 2) 

a phylogenetic regression model whose covariate was again the module eigengene (averaged per 

species), 3) a multivariate linear regression model that included the module eigengene, sex, tissue, 

and relative age as covariates, 4) model approach 1 applied to specific tissue types.  

The marginal analysis identified four modules (magenta, black, midnightblue, and tan) that related 

significantly to maximum lifespan (the absolute value of the Pearson correlation exceeded r=0.6, 

Student T test p<1×10-33). The CpGs underlying the implicated modules exhibit the sample 

patterns as can be seen from corresponding heatmaps (fig. S14C). Phylogenetic regression also 

identified associations of the same modules (table S3). Our fourth modeling approach, i.e. the 

tissue-stratified marginal analysis, indicates that the relationship of modules to maximum lifespan 

is often tissue-specific. For example, the magenta and midnightblue modules relate to maximum 

lifespan in lung and liver (fig. S14A). In contrast, the black module relates to maximum lifespan 

only in skin, while the tan module exhibited a weak relationship to lifespan in the tissue-specific 

analysis. 

For ease of comprehension, modules were labeled with the trait and direction of relationship by 

superscript +/- signs (e.g. magenta = Lifespan(+)Weight(+)Blood(+) module). The two modules 

(magenta with 480 CpGs, and midnightblue with 249 CpGs) that correlated with lifespan in lung 

and liver also correlated significantly with average adult weight across all eutherian species 

(r=0.47 to 0.55, p<1x10-18, Fig. 3).  The magenta module (Lifespan(+)Weight(+)Blood(+) ) is 

enriched with developmental genes such as HOXA5 and VEGFA, SOX2, and WNT11 (table S4). 

The midnightblue (Lifespan(+)Weight(+)) module implicates genes involved in tRNA metabolism 

(p=2x10-6, e.g. URM1), lipopolysaccharides (p=5x10-6, e.g. CERCAM), development (p=10-4, 

HOXL gene family), and fatty acids (p=2x10-3, e.g. ACADVL). The magenta module also relates 

to lifespan and average weight of dog breeds (Fig. 3C, r= -0.30, p=0.003). Furthermore, it is related 
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to the hazard of human death (hazard ratio HR= 0.91, MetaP=0.0016, Fig. 3D) in epidemiological 

cohort studies.  

After adjustment for phylogeny, the cyan module relates to mammalian lifespan phylogenetic 

contrast (r=0.42, p=4x10-14, fig. S13I). The Lifespan(+)Liver(-) (cyan) module consists of genes that 

play a role in adaptive immunity (p=2x10-6), histone and protein demethylation (p=0.0001), and 

metabolism (p=0.0004) (table S4).  

The multivariate model analysis included sex, tissue type, and relative age as covariates to reveal 

the modules that relate to lifespan in different tissues. The regression analysis found two modules 

with opposing correlations with maximum lifespan: green module (lifespan r=0.42, average weight 

r=0.38, p<10-300) and the greenyellow module (lifespan r= -0.44, average weight r= -0.35, p<10-

300, fig. S13J). The CpGs of the Lifespan(-)Weight(-)Rodentia(+) (greenyellow) are located near 

genes that play a role in development (p=5x10-13, table S4) and in RNA metabolism (p=6x10-12).  

Age-related consensus module in mammals  

The purple module (denoted subsequently as RelativeAge(+) module) exhibited the strongest 

positive correlation with relative age (Relative age r=0.35, p<10-300, Fig. 3E; fig. S13).  

To remove the confounding effects of species and/or tissue type, we also constructed seven 

consensus networks (denoted cNet3,...,cNet9, description in supplement and methods). The 

RelativeAge(+) module was preserved in 3 different consensus networks (cNet3, cNet4, and cNet6, 

Fig. 2A), suggesting conservation in different species and tissues (scatter plot in fig. S11H). The 

purple RelativeAge(+) module is positively enriched for CpGs in regulatory regions (e.g. promoters 

and 5’UTR) and depleted in intron regions (fig. S15). Functional enrichment of this module 

highlighted embryonic stem cell regulation, axonal fasciculation, angiogenesis, and diabetes-

related pathways (table S3). The CpGs in this module are adjacent to Polycomb repressor complex 

2 (PRC2, EED) targets which are marked by H3K27me3 (table S3).  

Ingenuity pathway analysis implicates POU5F1 (alias OCT4), SHH, ASCL1, SOX2, and 

NEUROG2 proteins as putative upstream regulators of the RelativeAge(+) module. We used GTEx 

data to examine if the mRNA levels of any of these upstream regulators are altered with age in 

several human tissues. OCT4 (repeated measures correlation, rmCor=0.07, p=2x10-14), which is 

among the four known Yamanaka factors for cellular dedifferentiation, showed a positive increase 

with age in several but not all human tissues (fig. S11F). Nine other genes (e.g. HOXD10, 

rmCor=0.16, p=4x10-50; SRXN1, rmCor=-0.14, p=4x10-52) from the RelativeAge(+) module also 

had a nominally significant rmCorr (p<0.005) in GTEx data (Fig. 3F; fig. S11G), although 

opposite aging patterns could be found in select tissues. These observations highlight the relevance 

of genes in the RelativeAge(+) module to stem cell biology and aging in human tissues. 

Interventional studies in mice 

We related our methylation modules to interventions that are known to modulate the lifespan of 

mice (Fig. 4A–C). This included growth hormone receptor knockout (i.e., dwarf mice) {Pilcher, 

2003 #301} and caloric restriction {Acosta-Rodriguez, 2022 #829}, which extended life, and high-

fat diet, which elicited the opposite effect {Mozhui, 2022 #813}. Six modules, including the purple 

module (RelativeAge(+)) showed a significant decrease (p<0.05) of the module eigengene in dwarf 

mice and after caloric restriction, and conversely a modest increase after a high-fat diet. While the 

magenta, black, midnight blue, tan, and greenyellow modules have connections to the maximum 

lifespan in mammals, they did not present a clear relationship with interventions that modify 
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murine lifespan (GHRKO, CR, and high-fat diet). This suggests a mutual exclusivity between the 

modules related to maximum mammalian lifespan and those affected by interventions modulating 

murine lifespan. 

Transient expression of Yamanaka factors 

We examined if a transient expression of the Yamanaka factors in the 4-factor (4F) mouse affects 

the module eigengenes. The experimental design is shown in Fig. 4D, with additional details 

reported in the original article {Browder, 2022 #734}. Four out of six of the above-mentioned 

murine intervention modules showed a nominally significant dose-dependent rejuvenation in 

murine skin (p<0.06) and 2 modules showed the same in kidney (dose refers to the duration of 4F 

treatment: 0-, 1-, 7-, and 10-months intermittent expression of 4F factors) (Fig. 4E). The purple, 

ivory, and lavenderblush3 modules were particularly sensitive to the 4F treatment (Pearson 

correlation ⩽-0.64 in skin). In addition, the purple RelativeAge(+) module’s response to the 4F 

treatment is consistent with bioinformatic findings that OCT4 is an upstream regulator of this 

module. Among the lifespan modules, only the black module demonstrates an increase (p=0.007) 

in skin of 4F treated mice, but this is not observed in the kidney. 

Epigenome-wide association analysis of maximum lifespan 

We carried out epigenome-wide association studies (EWAS) to identify individual CpGs with 

methylation levels that correlate with maximum lifespan. To reduce bias resulting from different 

levels of sequence conservation, our EWAS of maximum lifespan focused on 333 eutherian 

species, excluding marsupial and monotreme species. We restricted the analysis to 28,318 high 

quality probes that are conserved between humans and mice.  

When relating individual CpGs to log-transformed maximum lifespan, we used several modeling 

approaches (detailed in the Supplementary Text). Briefly, our first approach, generic modeling, 

applied regression analysis ignoring tissue type and age. Second, we repeated the regression 

analysis after focusing on a given tissue type. Third, we focused on specific non-overlapping age 

groups: young animals (defined as age younger than 1.5 times the age at sexual maturity), middle-

aged, and old (defined as Age>3.5 times the age at sexual maturity), see fig S19. Some of these 

regression models were further adjusted for average species weight (denoted lifespanAdjWeight). 

For brevity, we will focus on linear regression models since phylogenetic regression models led to 

qualitatively similar conclusions (tables S13–S14). The most significant lifespan-related CpGs are 

located in the distal intergenic region neighboring TLE4 (Pearson r = 0.68, p = 5.8x10-46, Fig. 5A, 

table S11) and two CpGs near the promoter region of HOXA4 (R = 0.66, p = 7.5x10-45, midnight 

blue module, Fig. 5A), and negatively-correlated with a CpG in an intron of GATA3 (R = -0.65, p 

= 8.8x10-42, Fig. 5A). Many of these significant CpGs remain so after phylogenetic adjustment, 

such as the CpGs neighboring TLE4, HOXA4 (p = 4.2x10-5, p = 4.8x10-3 respectively, fig. S17 and 

table S11-S12). The top 1,000 lifespan-related CpGs (comprising 500 positively and 500 

negatively lifespan related CpGs) significantly overlapped (Fisher exact p = 5.5x10-134) with those 

found in our weight-adjusted analysis (lifespanAdjWeight).  

In general, methylation of lifespan related CpGs does not change with age in mammalian tissues 

(Fig. 5B, fig. S20). The same can be seen from EWAS of lifespan restricted to animals of a given 

age group (e.g., only very young animals, fig. S20D). The EWAS of lifespan in all animals 

(irrespective of age) is highly correlated (r>0.7) with the analogous EWAS restricted to animals 

that are young, middle-aged, or old, animals respectively.  
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EWAS of lifespan showed good consistency with the eigengene-based analysis in the mammalian 

co-methylation network. As expected, the previously discussed lifespan-related modules were 

enriched with CpGs implicated by our EWAS of lifespan: midnightblue (hypergeometric test P = 

2.2x10-47; 67/249 overlapped CpGs), greenyellow (hypergeometric P = 2.1x10-36; 70/398 

overlapped CpGs), tan (hypergeometric P = 6.7x10-23; 52/365 overlapped CpGs), and green 

(hypergeometric P = 5.0x10-18; 104/1542 overlapped CpGs) module.  

In total, 1006 genes had a differential methylation association with lifespan (union of cognate 

genes resulting from the marginal model analysis for lifespan and lifespanAdjWeight). The gene 

expression levels of 17 of these genes exhibited a highly significant repeated measures correlation 

with chronological age (repeated measures Cor p value < 10-50) in different human tissues (Fig. 

5C). Two of these genes, PTCHD4 and ZBTB7B, were also implicated by EWAS of weight-

adjusted lifespan (lifespanAdjWeight).  The cognate genes next to the top 500 positively lifespan-

related CpGs play a critical role in animal organ morphogenesis (marginal model lifespan GREAT 

enrichment false discovery rate, FDR = 3x10-4 and LifespanAdjWeight FDR=3.3x10-7, Fig. 5D), 

increased rib number in mice (FDR=1x10-21, Fig. 5D), and implicates the HOXL gene group (FDR 

= 0.004 and weight adjusted LifespanAdjWeight FDR=1.3x10-15), and abnormal survival in mice 

(FDR <4x10-4). 

Upstream regulators of maximum lifespan 

We employed Ingenuity Pathway analysis {Kramer, 2014 #758} to identify potential upstream 

regulators of the genes cognate to the top 500 positively and top 500 negatively lifespan-related 

CpGs. The top-ranked candidate regulators of both gene lists included SOX2-OCT4-NANOG 

pluripotency factors (FDR = 5.7x10-4 lifespan negative, FDR = 5.7x10-4 lifespan positive), which 

play critical roles in cellular reprogramming. We performed a control analysis that ruled out 

potential confounding by sequence conservation (fig. S25). Upstream regulators also included 

several candidates related to development: sonic hedgehog (SHH), lifespan negative FDR = 

1.3x10-4; POU4F2, lifespan negative FDR = 3.3x10-7 and ASCL1, lifespan negative FDR = 1.6x10-

3 (Fig. 5E). These findings suggest that expression of lifespan-related genes might be regulated to 

some extent by pluripotency factors. This prompted us to investigate whether expression of any of 

the lifespan-related genes identified above are altered by transient expression of pluripotency 

inducing factors (Yamanaka factors OSKM) in a mouse model {Browder, 2022 #734}. Indeed, 

this analysis revealed that transient expression of OSKM altered the expression of 195 out of 646 

lifespan-related genes in skin and 166 lifespan-related genes in the kidney (nominal Fisher exact 

p=3.9x10-52 for skin and lifespan; p=1.4x10-42 for kidney and lifespan, Fig. 5F, fig. S32). Genomic 

positions that are known to be bound by pluripotency factors (in at least one human/murine cell 

type according to ChIP-seq data from Encode) are located near CpGs that are associated with 

maximum species lifespans: NANOG binding sites are enriched for CpGs that are positively 

correlated with lifespan (FDR=0.002) and to CpGs underlying the midnightblue module 

(FDR=0.0006), which has high methylation levels in long-lived species (Fig. 5G). OCT4 

(POU5F1) (FDR=0.02) and cMYC (FDR=0.003) binding sites are enriched with CpGs in the 

greenyellow module, which has low methylation levels in long-lived species (Fig. 5G). The ChIP-

seq binding location analysis also implicates other noteworthy factors such as POLII, CTCF, 

RAD21, YY1, and TAF1, which show the strongest enrichment for negatively lifespan-related 

CpGs (Fig. 5G).  

Given the role of CTCF in regulating the 3D organization of the genome, we conducted an 

enrichment analysis of topologically associating domain (TAD) boundaries and loop boundaries 
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identified in both human and mouse cell lines (fig. S26). We found that both TAD and loop 

boundaries demonstrated significant enrichment of negatively lifespan-related CpGs (FDR=3x10-

4 for TAD boundaries and FDR=6.7x10-4 for loop boundaries in various cell lines, such as olfactory 

receptor cells, as well as human fibroblasts IMR90 and HFFc6; fig. S26). 

CpGs linked to lifespan in various taxonomic orders and tissues 

To pinpoint CpGs associated with log maximum lifespan independent of phylogenetic order or 

tissue type, we conducted a meta-analysis of EWAS findings from 25 distinct strata, comprising 

phylogenetic order and tissue type. Using a non-parametric meta-analysis approach (rankPvalue), 

we assessed the EWAS of lifespan (meta.lifespan) in these strata to identify CpGs unconfounded 

by tissue type or phylogenetic order (table S24). Our meta.lifespan results demonstrated significant 

overlap with the previously mentioned EWAS of lifespan in all eutherian species (hypergeometric 

P = 1x10-175, Fig. 6A). In contrast, none of the meta.lifespan CpGs overlapped with EWAS of age, 

which further support the statement that methylation of lifespan-related CpGs does not change 

with age in mammalian tissues. The top 4 CpGs from the meta.lifespan analysis are depicted in 

Fig. 6B, showing significant positive correlations for CpGs near LOXL1 and ZSCAN29 (exons), 

and negative correlations for those near RAB29 (exon) and GATA3 (downstream) with log 

maximum lifespan across various taxonomic orders and tissue types. Similar to our above 

mentioned results, CpGs implicated by our meta lifespan analysis (FDR<0.05) overlap 

significantly (FDR<0.01) with genes involved in organ morphogenesis,  RNA biosynthesis, 

increased rib number in mice, Wnt signaling (Fig. 6C), and genes altered by transient expression 

of pluripotency-inducing factors in mouse models (nominal Fisher exact p<10-5 for skin and 

lifespan meta; p<10-11 for kidney and meta.lifespan, Fig. 6D). 

Chromatin state analysis 

Our large-scale mammalian DNAm data confirms that CpGs located in promoter regions (-2000 

to 2000 bp of TSS regions) have low methylation levels (Fig. 7A, mean=15%). In contrast, those 

in gene bodies and distal regions are highly methylated (Fig. 7A, mean value ~70%). CpGs having 

a high/low mean methylation level tend to have positive/negative Z statistics for lifespan, 

respectively (Fig. 7A-B). We find that CpGs with low methylation levels in long-lived species are 

located close to the transcriptional start site of genes and near binding sites of Polycomb repressive 

complex 1 (PRC1, p=6.4x10-11, Fig. 7C) and Polycomb  repressive complex 2 (PRC2, p=2x10-6). 

To test the hypothesis that long-lived species exhibit high/low methylation levels in chromosomal 

regions that are expected to have high/low methylation patterns, we used chromatin states that 

were identified and annotated based on over 1000 epigenetic data sets encompassing a diverse 

range of human cell and tissue types {Vu, 2022 #313}. 

The lifespan related CpGs are enriched with transcriptional start site chromatin state (TSS1, 

p=2.5x10-12), and flanking promoter states (PromF4, p=5.6x10-10; PromF5, p=2.0x10-9; PromF2, 

p=3.0x10-4, Fig. 7C).  

The CpGs with high methylation levels in blood samples of long-lived species are enriched in gene 

body associated states (notably transcribed state TxEx1, p=7.5x10-8 and highly transcribed state 

TxEx4 p=1.7x10-6, Fig. 7D). Detailed description of the chromatin state enrichment for EWAS of 

maximum lifespan is in the SupplementaryT. 

A bi-clustering analysis between chromatin states and co-methylation modules based on fold 

enrichments (Fig. 8; table S21; table S22) revealed that the 55 mammalian co-methylation 
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modules fall into three large groupings (referred to as meta modules).  The bar plot to the left of 

Fig. 8 shows different mean methylation levels of the CpGs underlying the 3 meta modules: mean 

methylation=0.23, 0.66, and 0.77 for meta modules 1, 2, and 3, respectively. 

Meta module 1 contains several chromatin states that are associated with Polycomb repression, 

including bivalent regulatory regions (BivProm1, 2) and ReprPC1. Further, meta module 1 

contains chromatin states related to transcriptional start sites (TSS1, TSS2), and several flanking 

promoters (PromF2,3,4,5). TSS1, PromF2, and PromF4-5 (associated with negatively lifespan-

related CpGs) were previously associated as the universal chromatin states with the strongest 

enrichments for CpG islands (54-101 fold) {Vu, 2022 #313}. The color band underneath Fig. 8 

reveals that six modules underlying meta-module 1 are sensitive to murine lifespan interventions. 

Meta module 1 is enriched with CpGs that have low methylation levels in long-lived species 

(overlap with EWAS of lifespan, tan/greenyellow modules, Fig. 8).  

Meta-module 2 can be considered as a partially methylated module (mean methylation 0.66) and 

is enriched with several enhancer states, late replicating domains (partially methylated domains, 

common PMD {Zhou, 2018 #656}), and solo CpGs (WCGW, {Zhou, 2018 #656}). Meta-module 

2 also contains the module most related with lifespan (midnightblue) and the human mortality risk 

module (magenta). These two modules overlap with the CpGs that are positively related to 

lifespan. Three out of four average weight-related modules are also located in meta-module 2. 

Discussion: 

In this study, we present an analysis of a cross-species DNA methylation dataset, obtained from a 

mammalian array platform. This platform specifically focuses on highly conserved regions of 

DNA, making it a valuable resource for studying methylation patterns across mammalian species 

{Arneson, 2022 #722}. The successful construction of mammalian phyloepigenetic trees suggests 

that the divergence of DNA methylation profiles is closely aligned with genetic changes 

throughout evolution. Sensitivity assessments reveal that the observed phyloepigenetic 

associations are not due to technical issues associated with our measurement platform. Instead, the 

phyloepigenetic signal may stem from sources like upstream regulators, transcription factors, or 

DNA sequence variations in distant regions. 

The conserved CpGs exhibiting the strongest phylogenetic signals are situated in intergenic 

regions, while promoter regions do not display such signals. Previous studies report a rapid 

evolutionary rate of enhancers as a shared feature among mammalian genomes, while promoters 

demonstrate either full or partial conservation across species {Villar, 2015 #828}. 

We found that 30 of the resulting 55 modules identified from an unsupervised machine learning 

method were readily associated with species traits (taxonomic order, maximum lifespan, average 

adult weight) or individual traits (chronological age, tissue, sex). We expect that many of the 

remaining 25 modules will be associated with biological characteristics about which we currently 

have no information. As a case in point, although the yellow module was not associated with any 

of our primary tested traits, it did show association with response to a murine circadian rhythm 

disruption study (light pollution during the night, fig. S7B). The upstream regulator analysis of the 

EWAS of lifespan identified the pluripotency transcription factors (OCT4, SOX2, and NANOG). 

We show that the transient overexpression of OSKM in murine tissues affects the methylation 

levels of CpGs near genes implicated by our EWAS of maximum lifespan (Fig. 5E). We speculate 

that the enhanced activity of the pluripotency network in long-lived species results in more 

efficient tissue repair and maintenance, ensuring a longer lifespan. 
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Both the EWAS and eigengene-based analyses identified methylation signatures of maximum 

lifespan presumably established at birth. Most of these were independent of aging and 

interventions that affect murine mortality risk. Several CpGs that are more highly methylated in 

long-lived species are located near HOXL genes and other genes that play a role in morphogenesis 

and development. Some of these lifespan related CpGs are located next to genes that are also 

implicated in our analysis of upstream regulators (e.g., ASCL1 and SMAD6).  

CpGs with methylation levels that are inversely related to lifespan are enriched in transcriptional 

start site (TSS1) and promoter flanking (PromF4, PromF5) associated chromatin states. Genes 

located in chromatin state TSS1 are constitutively active and enriched for nucleic acid metabolic 

processes {Vu,  #313}. This could imply that long-lived species either evolved selective 

mechanisms to maintain low methylation levels near transcription start sites or may have 

adaptations that promote the high expression of essential genes. This high expression may 

indirectly prompt more active DNA demethylation mechanisms.  

Method summary 

The Mammalian Methylation Consortium generated cytosine methylation data from n=15,456 

DNA samples derived from 70 tissue types of 348 mammalian species (331 eutherians, 15 

marsupials, 2 monotremes) using a custom-designed mammalian methylation array that targets 

CpGs at conserved loci in mammals {Arneson, 2022 #722}. DNA methylation data were used for 

phyloepigenetic tree development using 1-cor dissimilarity  applied to mean methylation values 

per species. The choice of the correlation-based dissimilarity matrix is justified in Supplementary 

Methods. 

For unsupervised analysis, we formed WGCNA networks based on two sets of CpG probes in our 

data. The first network was generated from 14,705 conserved CpGs in 10,927 samples of 167 

eutherian species. The preservation of this network was evaluated in an independent dataset 

comprising 3,692 samples from 29 tissues of 228 mammalian species (164 new species, 64 

overlapped with the training set). The second network was a subset of 7,956 conserved CpGs in 

11,105 samples from 167 eutherian and nine marsupial species. In addition, we developed seven 

consensus co-methylation networks to remove the confounding effects of species and tissue type. 

Consensus WGCNA can be interpreted as a meta-analysis across networks in different species and 

tissue types {Langfelder, 2008 #31;Langfelder, 2014 #275}. 

For the eutherian network (Net1), module eigengenes (MEs) were defined as singular vectors 

(corresponding to the highest singular value) from the singular value decomposition of the scaled 

CpGs that underlie the respective module. The eigengenes in the eutherian network (Net1) 

explained a range of 24–63% (average = 43%) of the variance in the methylation data in the 

training set, replication set, and all data in each module (table S3). For a given module, we defined 

the measure of module membership, kME, as the Pearson correlation between the module 

eigengene and the CpGs. The association of module eigengenes was examined for different traits 

using individual regression models. 

EWAS of lifespan was done in 28,318 CpGs that apply to mice and humans according to 

calibration/titration data (correlation with calibration exceeds 0.8) and mappability information as 

described in {Arneson,  #722}. Since the distribution of maximum lifespan and other life history 

traits were highly skewed, we imposed a log-transformation on these phenotypes before 

conducting EWAS. Our tissue type specific EWAS was conducted in tissues with enough species 

(N>25 species) available. For our various EWAS of log transformed maximum lifespan, we 
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adopted a nominal significance threshold of 1.8x10-6 (=0.01/28,318) based on the conservative 

Bonferroni adjustment. We report a false discovery rate in our enrichment studies to adjust for 

multiple comparisons. 
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Fig. 1. Phyloepigenetic trees parallel the mammalian evolutionary tree. (A) The traditional 

phylogenetic tree from the TimeTree database {Kumar, 2017 #321} based on 321 (out of 348) 

species in our study. A full description of the species in our study is reported in table S1. (B) 

Blood-based phyloepigenetic tree created from hierarchical clustering of DNA methylation data 

in this study (additional analysis in fig. S3A,B). We formed the mean value per cytosine across 

samples for each species. The clustering used 1 minus the Pearson correlation (1-cor) as a pairwise 

dissimilarity measure and the average linkage method as intergroup dissimilarity. Phyloepigenetic 

trees for skin and liver can be found in fig. S2. Additional analyses, e.g., involving different choices 

of CpGs or intergroup dissimilarity measures, are reported in the supplement (fig. S2). The colored 

bars reflect the branch height. (C) Scatter plot of the distances in blood phyloepigenetic (1-cor) vs 

the traditional evolutionary tree. (D) Scatter plots displaying the log-odds ratios of regions 

exhibiting phylogenetic signals relative to the transcription start site (TSS) are presented. The 

phylogenetic signal is determined using Blomberg's K statistic {Blomberg, 2003 #826}. In this 

analysis, CpGs were grouped into categories using sliding windows relative to the TSS, ensuring 

a minimum count of 10 CpGs per group. To assess enrichment, the Fisher exact overlap test was 

employed, focusing on the top 500 CpGs displaying phylogenetic signals within each region. The 

results indicate notable enrichment (OR>3) in certain intergenic and genic regions, but not in 

promoters. Additional analysis in fig. S4.  

Fig. 2. DNA methylation network relates to species and individual characteristics in 

mammalian species. (A) the WGCNA network of 14,705 conserved CpGs in eutherian species 

(Network 1). The identified modules related to species, or individual sample characteristics. 

Network 1 modules were compared to eight additional networks (fig. S5). The modules with strong 

associations with species and sample characteristics were labeled below the dendrogram. Grey 

color codes CpGs that are outside of modules. (B) summary of the modules that showed strong 

associations with species and individual sample characteristics. The +/- labels are the direction of 

association with each trait. (C) Top defined functional biological processes related to network 1 

modules (details in fig. S9, table S4). (D) mammalian co-methylation modules form clusters of 

proteins in the STRING protein-protein interaction (PPI) network. For the sake of visualization, 

the analysis was limited to the top 50 CpGs with the highest module membership value per module. 

colors: mammalian network 1. The lollipop plot shows the global cluster coefficient {Barrat, 2004 

#819} of the proteins within a module (up to 500 top CpGs) in a PPI network. Our permutation 

analysis matched the distribution of the original module sizes. We evaluated 1100 random 

permutations, i.e. 20 for each of the 55 modules. The boxplot reports the global clustering 

coefficient per module (y-axis) versus permutation status: module resulting from a random 

selection of proteins (left) versus original module resulting from WGCNA (right). The modules 

with cluster coefficients larger than the maximum permutation cluster coefficient were considered 
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as significant at p=0.001. The dashed vertical line corresponds to the maximum global clustering 

coefficient observed in the 1100 random permutations. 

Fig. 3. Co-methylation modules related to mammalian maximum lifespan, weight, human 

mortality, and age. Modules associated with log maximum lifespan (p<10-20) (A) or log average 

species weight (p<10-17) (B) in marginal association: correlation test with the mean module 

eigengene of the species. The module eigengene is defined as the 1st principal component of the 

scaled CpGs underlying a module. The species are randomly labeled by their animal number (table 

S1). (C) The top modules associated with median life expectancy, upper limit life expectancy, or 

average adult weight of 93 dog breeds, model:  marginal correlation test of the mean module 

eigengene with target variables (detailed breed characteristics are in table S8). R, Pearson 

correlation coefficient; p, correlation test p-value. (D) Forest plots of the top modules associated 

with mortality risk in the Framingham Heart Study Offspring Cohort (FHS), and Women’s Health 

Initiative (WHI) study, totaling 4651 individuals (1095, 24% death). The right panel indicates the 

number of deaths/total number of individuals in each study. We report the meta-analysis p-value 

in the title of the forest plot. (E) Module that correlates significantly (p<1x10-300) with relative age 

(defined as ratio of age/maximum lifespan) across mammalian species using a multivariate 

regression model. Covariates: tissue, sex, and species differences. Each dot corresponds to a 

eutherian tissue sample (n=14,542). Dots are colored by taxonomic order. (F) The volcano plot of 

the rmCorrelation of all purple module genes in GTEx data (Additional analysis in fig. S11).   

Fig. 4. The effects of different pro-aging and anti-aging interventions on selected DNAm 

modules. Six DNA methylation modules respond to lifespan-related intervention experiments and 

are associated with the life expectancy of the mouse models. In contrast, the mammalian maximum 

lifespan modules do not correspond directly to the benefits or stress triggered by the intervention 

in the murine samples. (A) Changes in the intervention modules in the liver parallel smaller size 

and longer life expectancy of growth hormone receptor mouse models (GHRKO). Sample size: 

GHRKO, 11 (5 female, 6 male); Wt, 18 (9 male, 9 female). The age range: 6–8 months. (B) Caloric 

restriction (CR) DNA methylation module signature predicts longer lifespan in this treated group. 

Age=18 months; Sex=Male; N=CR, 59; control, 36. (C) High-fat diet accelerates aging in the age 

module. N=high-fat diet, 133 (125 females, 8 males); control (ad libitum), 212 (202 females, 10 

males). Age range: 3–32 months. (D), (E) Examining the effects of in vivo partial reprogramming 

on intervention modules. (D) a schematic view of the partial programming experiment in 4F mice 

{Browder, 2022 #734}. A systemic Yamanaka factors expression (Oct4, Sox2, Klf4, Myc) was 

periodically induced by adding doxycycline to drinking water for two days per week. The partial 

programming was done at three different durations. Sample size: control (C57BL/6+dox), n=7; 

1m 4F, n=3; 7m 4F, n=5; 10m 4F, n=3 (all tissues except skin, n=2 for skin). (E) scatter plots of 

the linear changes of the intervention modules in the skin and kidney of mice treated with different 

durations (dosages) of Yamanaka factors. R, Pearson correlation coefficient; p, correlation test p-

value. The intervention modules indicate a dose-dependent rejuvenation of skin and kidney by this 

partial programming regimen.  

Fig. 5. Epigenome-wide association study (EWAS) of mammalian log-transformed 

maximum lifespan. (A) The figure represents the CpG-specific association with maximum 

lifespan across n=333 eutherian species. For EWAS, the mean methylation values of each CpG 

(per species) were regressed on log maximum lifespan. The right portion of the panel reports 

EWAS results after adjustment for average adult weight. Genome annotation:  human hg19. Red 
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dotted line: Bonferroni corrected two-sided p-value < 1.8x10-6. The point colors indicate the 

corresponding modules. The bar plot indicates the top enriched (hypergeometric test, eutherian 

probes as background) modules for the top 1000 (500 negative CpGs nominal p<1.1x10-11, 

FDR=1x10-10; 500 negative CpGs positive CpGs nominal p<1.5x10-21, FDR=7.5x10-20) significant 

CpGs for different EWAS. (B) Venn diagram of the overlaps between top hits from EWAS of 

maximum lifespan and meta-analysis of age (meta-analysis results from {Lu, 2021 #744}, 

additional analysis in fig. S20).  (C) Venn diagram of the overlaps between the genes adjacent to 

the EWAS results and top age-related mRNA changes in human tissues (p<1e-50). (D) Gene set 

enrichment analysis of the genes proximal to CpGs associated with mammalian maximum 

lifespan. We only report enrichment terms that are significant after adjustment for multiple 

comparisons (hypergeometric FDR <0.01) and contain at least five significant genes. The top three 

significant terms per column (EWAS) and enrichment database are shown in the panel. (E) 

Ingenuity potential upstream regulator analysis {Kramer,  #758} of the differentially methylated 

genes related to mammalian maximum lifespan. (F) Venn diagram of 3 gene lists. First, the top 

646 genes adjacent to 1000 lifespan related CpGs (500 positive and 500 negative). Gene lists 2 

and 3 are based on CpGs that are differentially methylated (nominal Wald test p<0.005, up to 500 

positive and 500 negatively related CpGs) after OSKM overexpression in murine kidney (601 

genes) and skin (695 genes) {Browder, 2022 #734}. We observe significant overlap between the 

gene lists (nominal Fisher exact p=3.9x10-52 for skin and lifespan; p=1.4x10-42 for kidney and 

lifespan) (G) transcriptional factor motif enrichment analysis of lifespan modules and lifespan 

related CpGs. The enrichment results for LifespanAdjWeight.negative were not significant. The 

overlap is assessed by a hypergeometric test for the CpGs within the motifs based on the human 

hg19 genome.   

 

Fig. 6. CpGs Linked to Lifespan in Various Taxonomic Orders and Tissues. Using the non-

parametric rankPvalue method {Langfelder, 2008 #31}, we combined 25 EWAS of lifespan results 

from various taxonomic order or tissue type strata, calculating the significance of a CpG's 

consistently high (or low) rank based on the 25 EWAS of log maximum lifespan (meta lifespan, 

underlying EWAS results can be found in table S24, Data S19). (A) The overlap of top 1000 (500 

per direction) meta-lifespan CpGs with EWAS of lifespan in all eutherians (nominal Fisher exact 

p=1x10-175). (B) Scatter plots illustrating the top meta-lifespan CpGs categorized into different 

tissue-phylogenetic order strata are presented. Each panel displays only the strata that exhibit 

significant relationships. The first row represents the phylogenetic order strata combining all 

tissues. (C) Gene set enrichment analysis of the genes proximal to CpGs associated with 

mammalian maximum lifespan. We only report enrichment terms that are significant after 

adjustment for multiple comparisons (hypergeometric FDR <0.01) and contain at least five 

significant genes. The top three significant terms per column (EWAS) and enrichment database 

are shown in the panel. (D) Venn diagram of 3 gene lists. First (the bottom circle), the top 407 

genes adjacent to 1000 meta-lifespan CpGs (500 positive and 500 negative). Gene lists 2 and 3 

(the top circles) are based on CpGs that are differentially methylated (nominal Wald test p<0.005, 

up to 500 positive and 500 negatively related CpGs) after OSKM overexpression in murine kidney 

(601 genes) and skin (695 genes) {Browder, 2022 #734}.  

Fig. 7. Chromatin state analysis and distance to the transcriptional start site for the lifespan 

related CpGs. (A)  The illustrated plot present mean methylation across species (displayed on left 

y-axis) and EWAS of maximum lifespan Z-statistics (shown on right y-axis), all plotted against 
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the distances to the closest transcription start site (represented on the x-axis). (B) Mean methylation 

across species (y-axis) is plotted against EWAS Z statistics for log maximum lifespan in different 

genomic regions (intergenic, promoter, gene body). Additional EWAS results after adjustment for 

phylogenetic relationships can be found in fig. S17-20 and corresponding enrichment results can 

be found in fig. S22-S24. Pearson correlation coefficients and p-values are reported in different 

panels. Chromatin state enrichment analysis of (C) the top 500 negatively lifespan related CpGs, 

and (D) top 500 positively lifespan related CpGs . The columns in each panel correspond to EWAS 

results for log transformed maximum lifespan across i) all tissues combined (Lifespan.All), ii) 

blood samples only (Lifespan.Blood), iii) skin samples only (Lifespan.Skin), meta-lifespan and 

the corresponding results after adjustment for average adult weight, Lifespan (AdjWeight). The 

last column reports enrichment with respect to the relativeAge(+) module (purple). We use the same 

significance thresholds as in Figure 5. The cells’ shadings correspond to fold enrichment between 

co-methylation modules and each chromatin state. The cells’ numeric values correspond to the p-

value of such enrichments based on the hypergeometric test, and only cells’ values with significant 

p-value<0.001 (equivalent to FDR<0.02) are shown. The chromatin states are learned based on 

epigenetic datasets profiling chromatin mark signals in different human cell and tissue types, 

resulting in a genome annotation shared across cell types {Vu, 2022 #313}. The common partially 

methylated domains (commonPMD), solo CpGs (WCGW), and highly methylated domain (HMD) 

annotations are from {Zhou, 2018 #656}. Polycomb repressor complexes (PRC) 1 and PRC 2 

binding sites are obtained from the ChIP-seq datasets of PCR 1 and 2 from ENCODE (ENCODE 

Project Consortium, 2012){Consortium,  #823}.  

Fig. 8. Mammalian methylation meta modules based on the chromatin states and external 

genome annotations. The heatmap shows the enrichments between (1) mammalian co-

methylation modules and significant lifespan related EWAS CpG groups (x-axis) EWAS and (2) 

chromatin states or other genomic annotation (y-axis). The cells’ shadings correspond to log 

transformed fold-enrichment values (observed count divided by expected count). Hypergeometric 

tests were used to evaluate the enrichment significance in each cell, and * indicates a nominal p-

value<0.001 (FDR<0.10). Only chromatin states and external genome annotations with at least 

one significant enrichment (FDR<0.10) are shown. The chromatin states are based on a human 

based universal chromatin annotation of human cell and tissue types {Vu, 2022 #313}. Other 

genomic annotations include the common partially methylated domains (commonPMD), solo 

CpGs (WCGW), and highly methylated domain (HMD) annotations, which are from {Zhou, 2018 

#656}. In addition, Polycomb repressor complexes (PRC) 1 and PRC 2 binding sites are defined 

from the ChIP-seq data of PRC 1 and 2 from ENCODE (ENCODE Project Consortium, 

2012){Consortium,  #823}. The row and column hierarchical clustering trees (average linkage) 

are based on a dissimilarity (1 minus the pairwise Pearson correlation between log transformed 

fold enrichment values). The left side barplot indicates the mean methylation levels of the CpGs 

in each state for all eutherian samples in our data. We used the 14,705 eutherian CpGs as the 

background for enrichment of the co-methylation modules. In contrast, 28,318 CpGs (high quality 

probes in humans and mice) were used as a background for enrichment of significant lifespan 

related EWAS CpG groups with chromatin states and genome annotations. Each EWAS CpG 
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group includes up to 500 most significant CpGs per direction (positively/negatively related with 

lifespan) as detailed in the caption of Fig. 5. 

 

 


