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Animal Microbiome

Immune‑mediated hematological disease 
in dogs is associated with alterations of the fecal 
microbiota: a pilot study
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Abstract 

Background  The dog is the most popular companion animal and is a valuable large animal model for several human 
diseases. Canine immune-mediated hematological diseases, including immune-mediated hemolytic anemia (IMHA) 
and immune thrombocytopenia (ITP), share many features in common with autoimmune hematological diseases 
of humans. The gut microbiome has been linked to systemic illness, but few studies have evaluated its association 
with immune-mediated hematological disease. To address this knowledge gap, 16S rRNA gene sequencing was used 
to profile the fecal microbiota of dogs with spontaneous IMHA and ITP at presentation and following successful treat‑
ment. In total, 21 affected and 13 healthy control dogs were included in the study.

Results  IMHA/ITP is associated with remodeling of fecal microbiota, marked by decreased relative abundance 
of the spirochete Treponema spp., increased relative abundance of the pathobionts Clostridium septicum and Escheri-
chia coli, and increased overall microbial diversity. Logistic regression analysis demonstrated that Treponema spp. were 
associated with decreased risk of IMHA/ITP (odds ratio [OR] 0.24–0.34), while Ruminococcaceae UCG-009 and Chris‑
tensenellaceae R-7 group were associated with increased risk of disease (OR = 6.84 [95% CI 2–32.74] and 8.36 [95% CI 
1.85–71.88] respectively).

Conclusions  This study demonstrates an association of immune-mediated hematological diseases in dogs with fecal 
dysbiosis, and points to specific bacterial genera as biomarkers of disease. Microbes identified as positive or nega‑
tive risk factors for IMHA/ITP represent an area for future research as potential targets for new diagnostic assays and/
or therapeutic applications.
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Background
Nearly half of all American households own dogs as 
companion animals (American Pet Products Associa-
tion Survey 2015–2016) and dogs are increasingly rec-
ognized as a large animal model of human diseases 
[1–3]. Immune-mediated hematological disease, includ-
ing immune-mediated hemolytic anemia (IMHA) and 
immune thrombocytopenia (ITP), is an important cause 
of morbidity and mortality in dogs. IMHA shares many 
of the features of warm autoimmune hemolytic anemia in 
people [4]. Similarly, ITP in the two species shows several 
common characteristics [5–8]. Erythrocytes or platelets 
become bound by immunoglobin, leading to opsoniza-
tion and phagocytosis by macrophages [9–11]. As a result 
of this process, canine patients present with anemia or 
thrombocytopenia. First-line therapy involves immuno-
suppression with corticosteroids, but up to 70% of canine 
patients with IMHA and up to 20% of patients with ITP 
succumb to their disease or are euthanized because of 
aggressive autoimmunity [12–17].

Numerous environmental triggers, including infec-
tions, toxins, drugs, parasites, or neoplasia [11, 18–22], 
have been implicated in the development of autoim-
mune disease. Notably, there is increasing recognition 
that the “exposome”—environmental factors that include 
the patient’s mucosal microbiota—impacts the manifes-
tation of autoimmune disease in humans [23, 24]. Over 
the past 10  years, a growing evidence base has demon-
strated that gut microbiota are crucial for host function 
and nutrient availability [25–27], xenobiotic detoxifica-
tion [28–30], and immune system maturation and regu-
lation [31, 32]. Multiple diseases, such as inflammatory 
bowel disease [33], hepatic steatosis [34], atherosclero-
sis [35], Parkinson’s disease [36], and colorectal cancer 
[37], are associated with alterations in the gut microbi-
ome, but molecular evidence of a causal pathogenic role 
remains unclear [38]. Dogs and humans share similar 
disease-associated responses in gut microbial composi-
tion [39–41], suggesting that inferences made in a canine 
model are relevant to human disease, with homologous 
cross-species pathomechanisms [42, 43]. Dysbiosis has 
been documented in human ITP patients in several 
studies and is speculated to contribute to pathogenesis 
[44, 45]. One study of human ITP patients found a link 
to alterations in the intestinal  microbiome and treat-
ment response [46]. Similarly, our preliminary data sug-
gested changes in the intestinal microbiome in dogs with 
ITP or IMHA, including enrichment of potential patho-
gens (Clostridium septicum and Escherichia coli) [47]. A 
case report describing fecal microbiota transplantation 
to treat human ITP  raises awareness of the therapeutic 
potential of this strategy, andan ongoing clinical trial is 
evaluating the efficacy of probiotics in human ITP [48].

In the current study, we hypothesize that alterations in 
the gut microbiome, inferred from fecal microbiota, are a 
hallmark of immune-mediated hematological diseases in 
dogs. Characterizing the fecal microbiota of healthy and 
diseased dogs, we sought to identify microbial biomark-
ers of IMHA/ITP in this model species.

Results
Study population
A total of 31 patients were initially recruited. Twenty-one 
patients, comprising 17 dogs with IMHA and four dogs 
with ITP, were responsive to immunosuppressive treat-
ment and were included in the study (Fig. 1A). In addi-
tion, 13 healthy dogs were sampled, comprising three ‘in 
contact’ controls from the same households as affected 
animals and 10 that were not in contact with affected 
animals (Fig. 1A). Response to immunosuppressive treat-
ment was defined by an increase in packed cell volume in 
IMHA, or platelet count in ITP, without relapse, within 
the first eight weeks of treatment (Fig. 1B). Samples were 
collected from affected animals at baseline, and two and 
eight weeks after initiating treatment.

During the study period, 15 of the 21 reported cases 
were prescribed antimicrobial therapy, including amoxi-
cillin with clavulanic acid (1), ampicillin (1), enrofloxacin 
(2), doxycycline (4), and metronidazole (10). The beta 
diversity profile of fecal samples from dogs treated with 
antimicrobials overlapped with that of dogs not treated 
with antimicrobials (p = 0.21 by PERMANOVA test; 
Additional file 1: Figure S1).

Characterization of fecal microbiota in study dogs reveals 
consistent mammalian patterns
The qualified dataset contained an average of 49,333 non-
chimeric reads, ranging from 27,115 to 71,579 reads/
sample (median = 48,690 reads/sample; mean = 49,333 
reads/sample) after DADA2 amplicon sequence vari-
ant (ASV) de-noising. Broad taxonomic representation 
of fecal microbiota was  similar in healthy and diseased 
dogs at baseline (Additional file 1: Figure S2). In descend-
ing order by relative abundance (> 1% on average), Fir-
micutes, Bacteroidetes, Spirochaetes, Euryarchaeota 
and Proteobacteria were the dominant phyla in most of 
the healthy and baseline disease samples. Firmicutes and 
Bacteroidetes accounted for over 50% of gut microbiota. 
Treponema (Spirochaetes), Methanobrevibacter (Euryar-
chaeota), and Escherichia-Shigella (Proteobacteria) were 
the dominant genera belonging to the most abundant 
phyla. To distinguish the primary differences between 
healthy dogs and those with immune-mediated hemato-
logical disease, we combined all unaffected dogs to create 
a single control group, and all affected dogs to create a 
single disease group, in subsequent analyses.
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Immune‑mediated hematological diseases are associated 
with fecal microbial alterations
Fecal microbial composition, including abundance 
and diversity, was analyzed in detail in the healthy and 
IMHA/ITP dogs to determine the differences between 
disease status at baseline, prior to initiation of immu-
nosuppressive therapy. Alpha diversity, as measured 
by Shannon’s index and Simpson’s index, was higher in 
affected dogs (Fig. 2A).

We used DESeq2 [49] to identify microbes that were 
differentially abundant between healthy and diseased 
dogs (p < 0.05 and standard error of the log2 fold change 
estimate [lfcSE] < 4) (Fig. 2B). Eight taxa were enriched 
in the healthy dogs, predominantly belonging to the 
genus Treponema. Twenty-nine taxa were enriched in 

the affected dogs, including several potential pathogens 
such as Clostridium septicum (the closest NCBI RefSeq 
annotation for Clostridium sensu stricto 1 in Fig.  2B) 
and Escherichia coli (the closest NCBI RefSeq annota-
tion for Escherichia-Shigella in Fig. 2B).

Distinct fecal microbes predict risk of immune‑mediated 
hematological disease
Since we observed several taxa associated with canine 
IMHA/ITP (Fig. 3A), we used logistic regression anal-
ysis to test whether these taxa would predict the risk 
of developing IMHA/ITP. In total, we observed 12 taxa 
associated with either increased or decreased odds of 
developing IMHA/ITP (Fig.  3B and Additional file  1: 

Fig. 1  Study design of a survey of gut microbiota in canine immune-mediated hematological disease. A Fecal samples of healthy dogs were 
collected once both from the disease in-contact and non-in-contact dogs. Samples of diseased dogs were collected at presentation (week 0/
baseline) and week 2 and week 8 after treatment. B Assessments of the clinical response of IMHA (PCV %) or ITP (platelet count × 1000/μL) patients 
at weeks 0, 2, and 8. The normal values of PCV and platelet counts are depicted by shading. IMHA: immune-mediated hemolytic anemia, ITP: 
immune thrombocytopenia, PCV: packed cell volume
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Table S1). Amongst these were three taxa belonging to 
the genus Treponema associated with decreased risk of 
IMHA/ITP (odds ratio [OR] = 0.24–0.34; see details in 
Additional file 1: Table S1). Analysis of the ASVs from 
these taxa showed that the closest species annotations 
were Treponema bryantii (94.07–98.02% identity) and 
Treponema pectinovorum (94.47% identity). We also 
identified seven taxa, including one Treponema sp. 
(Treponema parvum; 92.10% identity; OR = 2.74, 95% 
confidence interval [CI] = 1.15–7.98), two Eubacte-
rium coprostanoligenes (92.89% identity, OR = 2.03, 
95% CI = 1.12–4.83 and 90.51% identity, OR = 2.7, 
95% CI = 1.28–9.82) and Phascolarctobacterium suc-
cinatutens (99.60% identity, OR = 2.58, 95% CI = 1.12–
7.57), associated with increased risk of IMHA/ITP, 
with odds ratios ranging from 2.03 to 8.36 (Additional 
file 1: Table S1). Two of the taxa most strongly associ-
ated with disease were Ruminococcaceae UCG-009 
(OR = 6.84, 95% CI = 2–32.74) and Christensenellaceae 
R-7 group (OR = 8.36, 95% CI = 1.85–71.88), with the 
closest species annotations being Papillibacter cin-
namivorans (92.89% identity) and Novibacillus thermo-
philus (88.54% identity), respectively.

Fecal microbial alterations persist with remission 
of disease following treatment
We next asked whether disease-associated changes in the 
fecal microbiota of IMHA/ITP dogs resolved with treat-
ment. Treatment with immunosuppressive drugs yielded 
robust recovery of hematological parameters in the 
affected dogs included in this study (Fig. 1B). Beta diver-
sity analysis showed no significant shift in microbiome 
structure following treatment (Fig. 4A, p = 0.21 by PER-
MANOVA test; Fig. 4B, p = 0.85 by Kruskal–Wallis test). 
Microbial changes along PC2, accounting for approxi-
mately 16% of the total variance in our data set, showed 
a possible association with treatment, but changes, if any, 
were subtle (Fig. 4C).

We examined relative abundance of the 12 risk-asso-
ciated taxa identified from logistic regression analysis of 
baseline samples (Fig. 3 and Additional file 1: Table S1). 
Relative abundance of five taxa showed significant differ-
ences from the healthy group (Fig. 5). Treponema (ASV 
47 and ASV 107) and Lachnospiraceae (ASV 271) showed 
lower relative abundance in diseased dogs throughout 
treatment. In contrast, Ruminococcaceae UCG-009 (ASV 
185) and Christensenellaceae R-7 group (ASV 212) show 
higher relative abundance in diseased dogs. In addition, 

Fig. 2  Differential diversity and composition of gut microbiota in healthy and diseased dogs. A Alpha diversity measured by the Shannon’s index 
and Simpson’s index. The diseased dogs had significantly higher Shannon’s and Simpson’s indices. B Baseline differential abundance heatmap of gut 
microbiota between healthy and diseased dogs. Thirty-seven significantly differentiated features (amplicon sequence variants; ASVs) were identified 
by the DESeq2 test (p < 0.05 and standard error of the log2 fold change estimate, lfcSE < 4)



Page 5 of 13Liu et al. Animal Microbiome            (2023) 5:46 	

the Christensenellaceae R-7 group (ASV 212) remained 
more abundant throughout treatment, consistent with 
changes in beta diversity. In all cases, there were no sig-
nificant changes in relative abundance with treatment.

Discussion
Our study is the first to examine the fecal microbiota 
of dogs with the two most common immune-mediated 
hematological diseases in this species. Although we 
regard this as a pilot study, the differential abundance 
of several bacterial species within the diseased dogs was 
notable. These differences raise the intriguing possibility 

that fecal microbial composition may play a protective 
or pathogenic role in immune-mediated diseases of the 
blood. To our surprise, there were no significant changes 
in fecal microbial populations with treatment over the 
eight-week period of observation despite remission of 
disease, arguing against rapid shifts in the fecal microbi-
ome that mirror those of clinical disease.

Several species of the genus Treponema showed lower 
abundance in the diseased dogs, prompting us to spec-
ulate that they may play a protective role in health. In 
contrast, Ruminococcaceae and Christensenellaceae R-7 
group species showed higher abundance in the diseased 

Fig. 3  Risk of disease conferred by the differential abundance of microbial amplicon sequence variants (ASVs) identified by odds ratios (OR). A 
Significant ASVs identified by DESeq2 test were tested by logistic regression models. B Models passing a p < 0.05 threshold are presented with odds 
ratios (OR) and 95% confidence intervals
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dogs, raising the possibility that they may play a patho-
genic role in disease. Several studies in other species have 
demonstrated the importance of the intestinal micro-
biome in the initiation and progression of autoimmune 
disease, driven by mechanisms including the translo-
cation of pathobionts that elaborate proinflammatory 
molecules, bacterial mimicry of autoantigens, and paral-
lel dysregulation of the metabolome with attenuation of 
anti-inflammatory pathways [50–53].

Increasing recognition of the role of the intesti-
nal microbiome in distal homeostatic and patho-
genic immune pathways suggests that manipulation 
of the mucosal microbiota with antibiotics, prebiotics, 

probiotics, synbiotics, or fecal transplantation may rep-
resent a novel therapeutic opportunity in autoimmun-
ity [53–56]. Various studies have documented intestinal 
dysbiosis in human ITP, as well as bacterial signatures 
that correlate with clinical indices, but the discordance of 
findings and relative paucity of data underscore the com-
plexity of this field and the need for additional research 
[44, 45, 57, 58]. Moreover, to the best of our knowledge 
similar studies have not been performed in autoimmune 
hemolytic anemia in human patients, which represents 
an unmet need in this area of medicine [4, 56].

The lower abundance of Treponema spp. in diseased 
dogs in the current study is a novel finding. Although 
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this spirochete genus has been associated with syphilis 
[59], gastritis [60], Alzheimer’s disease [61], periodon-
titis and gingivitis [62] in people, and periodontitis in 
dogs [63–65], the potentially protective role of certain 
Treponema spp. has been poorly characterized. Nguyen 
and colleagues documented decreased abundance of four 
core genera, including Treponema, in the feces and cecal 
mucus of mice with complete Freund adjuvant-induced 
arthritis, a model of rheumatoid arthritis [66]. The syn-
thesis of anti-inflammatory short chain fatty acids by 
Treponema spp. was suggested as a possible protective 
mechanism, but both their impact on disease and any 
mechanistic basis of such interactions remain specula-
tive at this juncture. Moreover, one species, Treponema 
parvum, was among those seven taxa associated with 

increased risk of IMHA/ITP in our study, emphasizing 
the danger of broad, genus-level statements that ignore 
species-level nuances.

The increased abundance of Ruminococcaceae and 
Christensenellaceae R-7 group species in the diseased 
dogs also represents a novel, albeit unexpected, finding. 
In general, the Ruminococcaceae are anti-inflammatory, 
short-chain fatty acid-synthesizing bacteria present in 
high abundance in the intestinal microbiota of healthy 
people [67] and dogs [42, 68], and low abundance in 
human patients with various autoimmune diseases [69, 
70], including ITP [58]. Of note in the canine intesti-
nal microbiome is the species Faecalibacterium praus-
nitzii, a strict anaerobe of the phylum Firmicutes, class 
Clostridia, and order Clostridiales that is considered a 
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hallmark of intestinal microbial health [42, 71]. Never-
theless, individual species within this family may have 
pathogenic potential. The closest species annotation 
for Ruminococcaceae UCG-009 is Papillibacter cin-
namivorans, a bacterium whose abundance is associated 
with both beneficial outcomes, for example in dogs fed 
a Mulberry leaf supplement in the treatment of obesity 
[72], and deleterious outcomes, for example in patients 
with Parkinson’s disease [73]. Similarly, another species 
belonging to this family, Ruminococcus anavus, was pre-
sent in greater abundance in the feces of patients with 
ITP, in which alterations of microbial species correlated 
with clinical indices [46]. In similar fashion to the Rumi-
nococcaceae, the Christensenellaceae are generally con-
sidered to be anti-inflammatory healthy bacteria [74], 
present in lower abundance in states of autoimmunity 
[75]. However, little is known of the species we identified, 
Novibacillus thermophilus, and the possibility remains 
that intestinal microbial perturbations represent protec-
tive rather than pathogenic mechanisms, triggered as a 
response to immune-mediated disease [76].

Other bacteria positively associated with disease in 
our study included Clostridium septicum, Eubacterium 
coprostanoligenes, and Phascolarctobacterium succina-
tutens. While none of these bacteria has been associated 
with immune-mediated disorders, they have been associ-
ated with other disease entities. Documented in the fecal 
microbiota of healthy people and dogs, Clostridium septi-
cum has been associated with sepsis [77], type 3c diabe-
tes mellitus [78], and colorectal cancer [79–82]. Bacteria 
within the genus Eubacterium are generally considered 
beneficial to health, producing butyrate and metabo-
lizing bile acids and cholesterol [83, 84]. Eubacterium 
coprostanoligenes is a cholesterol-reducing anaerobic 
coccobacillus that has been implicated in the phenom-
enon of manure “foaming” [85], but little is known about 
its pathogenic potential. Its abundance in the feces of 
children with autism spectrum disorder was positively 
correlated with gastrointestinal symptoms [86]. Fecal 
microbiota transplantation decreased the abundance of 
this bacterium, with an improvement in both behavio-
ral and gastrointestinal symptoms, suggesting a possible 
association with neurobehavioral disease [86]. Its poten-
tial role in autoimmune disease remains unknown. The 
abundance of bacteria within the genus Phascolarctobac-
terium has been associated with neuropsychiatric disor-
ders [87], psoriasis [88], Hashimoto thyroiditis [89], and 
diabetes mellitus [90, 91], suggesting pathogenic poten-
tial in a variety of settings. There was a positive correla-
tion between the concentration of soluble interleukin-2 
receptor in psoriasis patients and fecal abundance of 
Phascolarctobacterium [88], raising the possibility that 
this bacterium may contribute to the pro-inflammatory 

phenotype of this disease. Phascolarctobacterium suc-
cinatutens has been implicated as a signature species in 
human metabolic dysfunction fatty liver disease [92], 
although its abundance was reduced in the intestinal 
microbiome of obese cats [93]. This dichotomy once 
again highlights the challenges inherent in associating 
specific bacteria with specific diseases within and across 
mammalian taxa.

The lack of significant changes in the fecal microbiota 
with treatment of the IMHA/ITP patients in this study, 
all of which responded to immunosuppression within 
eight weeks, was unanticipated. We had speculated that 
dysbiotic signatures associated with disease would nor-
malize in parallel with clinical remission, as has been 
found in several diseases of immune-mediated etiology 
in human patients and rodent models, including rheu-
matoid arthritis [66, 94], uveitis [95], keratoconjunctivitis 
sicca [51], neuropsychiatric disorders [86], diabetes mel-
litus [96], and autoimmune thyroid disorders [97]. It is 
possible the changes we documented in fecal microbiota 
may take longer than eight weeks to normalize, or that 
the apparent dysbiosis in these patients may never com-
pletely resolve while they are being treated. Furthermore, 
several dogs received antimicrobial drugs during the time 
immunosuppressive therapy was administered, poten-
tially inhibiting normalization of fecal microbial commu-
nities despite the apparent absence of an antimicrobial 
impact on beta diversity (Additional file  1: Figure S1). 
There is also increasing recognition that glucocorticoids 
negatively impact intestinal microbial diversity in several 
species [98–102]. Nevertheless, changes in the micro-
biota induced by glucocorticoids are thought to underlie 
their beneficial impact in systemic lupus erythematosus 
[103, 104] and inflammatory bowel disease [105], under-
scoring the complexity of the inter-relationship between 
intestinal microbial composition, disease status, and the 
influence of therapeutic drugs. If dysbiosis is a primary 
pathogenic driver of IMHA and ITP, we hypothesize that 
delayed normalization of microbial composition could 
contribute to the tendency of patients to relapse with 
premature cessation of immunosuppressive treatment.

There were several shortcomings of this study, from 
which only preliminary conclusions can therefore be 
drawn. A modest number of dogs with IMHA and ITP 
were recruited from multiple centers of wide geographi-
cal dispersion, managed by different clinicians with dif-
ferent clinical approaches. Given the limited number 
of cases, both diseases were considered as one group, 
potentially undermining our ability to discern disease-
specific signatures. We included only samples from dogs 
responding to immunosuppressive treatment, preclud-
ing the assessment of bacterial signatures associated with 
unresponsive, or relapsing, disease. Most of the healthy 
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control dogs were from different households from the 
cases recruited into the study, giving us no opportunity 
to control for differences attributable to specific envi-
ronmental exposure. Patients were tracked for only eight 
weeks, with the risk of missing longer-term changes in 
the fecal microbiota. There were also limitations in the 
taxonomic resolution of short-reading sequences. Nev-
ertheless, several notable observations were made, robust 
to the confounding influence of recruiting center, spe-
cific disease, and other variables. Pilot data were gener-
ated that motivate further studies in a larger number of 
patients in the future.

In conclusion, immune-mediated hematological dis-
ease in dogs was associated with alterations in fecal 
microbiota in this small cohort of patients. Whether 
these changes were of primary pathogenic potential or 
epiphenomena remains unknown. Novel treatments 
that aim to restore healthy microbial composition may 
provide an adjunct to current immunosuppressive 
approaches in canine IMHA and ITP. Further research at 
the nexus of the intestinal microbiome and autoimmune 
disease in this species is warranted.

Methods
Inclusion criteria, treatment regimen, and sample 
collection
Immune-mediated hemolytic anemia was diagnosed by 
documenting a packed cell volume (PCV) of < 35% or a 
hemoglobin concentration of < 11  g/dL, associated with 
two examples of antibodies directed against erythrocyte 
antigens, as indicated by either a positive saline agglu-
tination or Coombs’ test result, or moderate to marked 
spherocytosis [106]. When only one of the above tests 
suggestive of antibodies was available, the additional 
indicator of hemolysis (i.e. hyperbilirubinemia, hemoglo-
binuria, hemoglobinemia, erythrocyte ghosts) fulfilled 
inclusion criteria. Idiopathic (non-associative) disease 
was diagnosed using a standardized diagnostic approach 
ruling out potential trigger factors—including iatrogenic 
causes, neoplasia, and infection—as assessed by history, 
physical examination, imaging of the thorax and abdo-
men, and screening for vector-borne pathogens [106].

Immune thrombocytopenia was diagnosed by docu-
menting a platelet count of less than 50,000/µL in a dog 
with no macroplatelets (confirmed on a blood smear) and 
no evidence of associative disease or disseminated intra-
vascular coagulation, as assessed by imaging of the tho-
rax and abdomen, screening for vector-borne pathogens, 
and coagulation tests. A canine bleeding assessment tool 
(DOGiBAT) score of at least 2 was required for inclusion 
[107].

In both IMHA and ITP, treatment-naïve cases were 
recruited, defined by the administration of no more than 

three doses of an immunosuppressive drug or biologic in 
the 28 days preceding presentation, either consecutively 
or non-consecutively. To minimize confounding factors, 
cases were excluded if they had received any antimi-
crobial drugs or pre/probiotics in the five days preced-
ing presentation, or one or more doses of a vaccine or a 
toxin in the 28  days preceding presentation (Additional 
file 1: Table S2). Dogs were not allowed to receive anti-
microbials during the study period except doxycycline 
for prophylaxis against vector-borne pathogens (pend-
ing test results), metronidazole for non-limiting diarrhea 
associated with mycophenolate mofetil administration, 
or drugs to treat secondary infections that arose once 
the dogs had been recruited (e.g. urinary tract infection) 
(Additional file 1: Figures S3 and S4). Neither the patients 
nor control dogs had received long-term antimicrobial 
drugs prior to recruitment.

All recruited cases received immunosuppressive ther-
apy, comprising initial dexamethasone (0.2–0.3  mg/kg 
IV q24h; maximum dose 8 mg), followed by prednisone 
or prednisolone (1.6-3  mg/kg PO q24h; maximum dose 
60  mg) and, in most cases, a second immunosuppres-
sive drug (Additional file 1: Figures S3 and S4; Table S2). 
The administration of blood products was permitted as 
clinically indicated. After initial recruitment, cases were 
excluded if clinically significant comorbidities (e.g. diabe-
tes mellitus) were diagnosed. Cases that failed to respond 
to treatment or that relapsed during the eight-week 
study period were also excluded from the final dataset. 
Corticosteroid therapy was tapered gradually, according 
to a standard protocol [108]. Remission of disease was 
defined by the attainment of a PCV > 37% (IMHA) or a 
platelet count of   > 150,000/µL (ITP) and the absence of 
immune markers of disease. Relapse, if it occurred, was 
defined by a drop in PCV of at least 5% (IMHA) or a drop 
in platelet count of at least 50,000/µL (ITP) since the pre-
ceding visit.

Patients were recruited from four centers, including 
the Matthew J Ryan Hospital, University of Pennsylva-
nia (Penn Vet;  n = 16), Cornell University Hospital for 
Animals (n = 12), the Lloyd Veterinary Medical Center, 
Iowa State University (n = 1), and the Foster Hospital 
for Small Animals, Tufts University (n = 2). At each time 
point, a fresh fecal sample was collected by rectal palpa-
tion or from a clean surface within 15 min of defecation. 
Fresh fecal samples were also collected once from healthy 
control dogs, both from the same household as patients 
(when available; in-contact, n = 3) and different house-
holds (non‒in-contact; n = 10). Inclusion criteria for 
healthy control dogs included the presence of systemic 
health based on a history and physical examination; the 
absence of antimicrobial or pre/pro-biotic consumption 
within five days of presentation; and the consumption 
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of no more than two doses, either consecutively or non-
consecutively, of any drug, including immunosuppres-
sives and biologicals but excluding nutraceuticals, within 
28 days of presentation. Neither the patients nor control 
dogs had consumed raw diets or treats within 28 days of 
presentation.

Fresh fecal samples of at least 10 g in weight were col-
lected within 15 min of defecation or by rectal palpation, 
delivered to Penn Vet within three hours of collection, 
and kept at 4  °C for no more than 48  h, before being 
treated and stored at − 20 °C. If drop-off at Penn Vet was 
not possible within three hours of defecation, fecal sam-
ples were stored in a − 20 °C freezer (within three hours 
of defecation) and transported to Penn Vet on ice within 
10 days of being placed in the − 20 °C freezer.

16S rRNA gene sequencing and data analysis
Bacterial genomic DNA was extracted from homog-
enized fecal samples using the PowerSoil DNA Isola-
tion Kit (MO BIO Laboratories, Carlsbad, CA) following 
the manufacturer’s instructions. A mock community 
genomic DNA library was amplified and sequenced as 
a quality control sample. Additional controls included 
extraction of blank-processed samples (water only) to 
determine background microbial signal. A Nextera dual-
index amplicon library construction method targeted the 
V4 region of the 16S rRNA gene by PCR amplification 
[109]. Pico-green-based amplicons were sequenced on a 
MiSeq platform (Illumina, San Diego, CA) using 250 bp 
paired-end chemistry.

A total of 3,990,059 paired-end sequences were gen-
erated for the 71 samples (excluding samples with fewer 
than 5,000 read counts, blank and mock control samples) 
from the Illumina MiSeq platform. The 16S rRNA gene 
amplicon sequences were processed using the Quantita-
tive Insights Into Microbial Ecology 2 (QIIME 2) pipe-
line (version 2019.10) [110]. Reads were truncated at 
220  bp for forward reads and 200  bp for reverse reads, 
then de-noised using the DADA2 algorithm [111, 112]. 
Amplicon sequence variants (ASVs) were obtained via 
the de-noising process with quality filtering and removal 
of chimeras. Consensus taxonomy was assigned using 
the classifier-consensus-vsearch plugin (the VSEARCH 
algorithm) [113, 114] against SILVA NR132 99% 16S 
rRNA gene sequences [115, 116]. The NCBI 16S RefSeq 
Nucleotide sequence records (retrieved from https://​
www.​ncbi.​nlm.​nih.​gov/​refseq/​targe​tedlo​ci/​16S_​proce​ss/ 
on January 8th 2022) were downloaded and trained as a 
BLAST database; the closet taxonomy of each ASV was 
assigned by using ‘blastn’ algorithm under the criteria of 
e-value ≤ 1e-5, max_target_seqs = 1, and max_hsps = 1. 
Representative sequences were aligned with MAFFT v7, 
and variable positions were then masked. A phylogenetic 

tree was built with the FastTree 2.1 and then rooted with 
midpoint.

Microbiome diversity and composition were analyzed 
in the context of disease status, and then visualized using 
the MARco [117], vegan [118], and pheatmap [119] pack-
ages in R software (version 4.1.2) [120]. A Kruskal–Wallis 
test and Dunn’s post-hoc test were used for all statistical 
analyses of group comparisons with a significance level 
of α = 0.05, and the p values were adjusted with a false 
discovery rate (FDR). A DESeq2 [49] analysis allowed 
group comparisons of each feature under the criteria of 
p < 0.05 and lfcSE < 4. Alpha diversity indices were esti-
mated by richness, Shannon’s index, and Simpson’s index. 
Beta diversity of microbial communities was measured 
by weighted Unifrac distance [121, 122] using a principal 
coordinates analysis (PCoA). Heterogeneity was exam-
ined using ADONIS tests.
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