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1  |  INTRODUC TION

Tuberculosis continues to be a leading cause of death worldwide, 
causing over 1.5 million deaths, and infecting over 10 million peo-
ple in 2020 (World Health Organization, 2021). The human-adapted 
pathogen causing tuberculosis, Mycobacterium tuberculosis (Mtb), has 
a complex lifestyle that requires rapid adaptation to host defences 
and immune pressure, including nutritional immunity, hypoxia and 

lipid-rich environments. In order to eradicate the disease, it is cru-
cial to understand how the pathogen survives attacks from host im-
mune cells and persists in an extended latent state inside the host. 
To adapt to these environmental challenges, bacterial cells must 
make complex transcriptomic adjustments, and these are thought to 
be complemented and fine-tuned by post-transcriptional regulation.

The mycobacterial genome produces a range of conditionally ex-
pressed transcripts, including non-coding RNA, short, unannotated 
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Abstract
A whole genome co-expression network was created using Mycobacterium tubercu-
losis transcriptomic data from publicly available RNA-sequencing experiments cov-
ering a wide variety of experimental conditions. The network includes expressed 
regions with no formal annotation, including putative short RNAs and untranslated 
regions of expressed transcripts, along with the protein-coding genes. These unan-
notated expressed transcripts were among the best-connected members of the 
module sub-networks, making up more than half of the ‘hub’ elements in modules 
that include protein-coding genes known to be part of regulatory systems involved 
in stress response and host adaptation. This data set provides a valuable resource for 
investigating the role of non-coding RNA, and conserved hypothetical proteins, in 
transcriptomic remodelling. Based on their connections to genes with known func-
tional groupings and correlations with replicated host conditions, predicted expressed 
transcripts can be screened as suitable candidates for further experimental validation.
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ORFs and untranslated regions at the 5′ and 3′ end of protein-coding 
sequences, many of which are poorly annotated and understood. In 
this paper, we extend our focus to include ‘non-coding’ RNA (ncRNA), 
here referring to non-ribosomal RNA transcripts not known to be 
translated into peptides, such as short RNAs (sRNAs) acting on either 
distant or antisense mRNA targets and the expressed untranslated 
regions (UTRs) flanking coding regions (which may also contain short 
open reading frames (sORFs) upstream from coding regions). Non-
coding RNA can alter the abundance of RNA and proteins by con-
trolling mRNA stability, processing and access to ribosome binding 
sites. Discovering the contribution of the non-coding genome to spe-
cific adaptation-response pathways may improve our ability to design 
therapeutics and prevent the evolution of persistent phenotypes.

1.1  |  Uncovering the role of non-coding RNA in 
adaptation and transcriptomic remodelling

The proportion of non-ribosomal, ncRNA in the Mtb transcrip-
tome has been shown to increase in stationary and hypoxic condi-
tions, indicating a potential role in adjusting to environmental cues 
(Aguilar-Ayala et al., 2017; Arnvig et al., 2011; Gerrick et al., 2018; 
Ignatov et al., 2015). Several mycobacterial ncRNA transcripts (par-
ticularly, sRNA) have been extensively studied and found to be as-
sociated with regulatory systems controlling adaptation to stress 
conditions or growth phase, linked to virulence pathways and ac-
cess to lipid media (Arnvig et al., 2011; Gerrick et al., 2018; Girardin 
& McDonough, 2020; Mai et al., 2019; Moores et al., 2017; Solans 
et al., 2014). Non-coding regulation in Mtb appears to function quite 
differently compared to model organisms, eschewing the use of any 
known chaperone proteins for RNA–RNA interactions and with few 
sRNA homologues found outside the phyla (Gerrick et al.,  2018; 
Mai et al., 2019; Schwenk & Arnvig, 2018). The discovery of ncRNA 
in Mtb has progressed using both molecular biology methods and 
high-throughput sequence-based approaches (reviewed in Schwenk 
& Arnvig, 2018) but uncovering the regulation and actions of a par-
ticular ncRNA is experimentally expensive and very few have been 
fully characterised. Annotation of identified transcripts remains in-
complete, as well, with only 30 listed in the Mtb H37Rv reference se-
quence (GenBank AL123456.3). Efforts to compile a comprehensive 
list of annotated ncRNAs for Mtb are impeded by non-standardised 
nomenclature, different standards of experimental validation, in-
complete reference annotations (especially for the closely related 
animal-adapted species of the Mycobacterium tuberculosis complex 
[MTBC]) and the variable expression of non-coding transcripts in 
response to different experimental conditions (Stiens et al., 2022).

Using RNA-sequencing (RNA-seq) data to predict ncRNA in the 
compact Mtb genome is challenging. Paradoxically, more sensitive, 
high-depth sequencing can make it more difficult to identify the small, 
low-abundance, functional transcripts above stochastic gene expres-
sion and technical noise. Parameters of detection must, therefore, be 
carefully considered for each data set to account for variation in expres-
sion levels. Though RNA-seq-based ncRNA prediction algorithms are 

often assumed to overpredict putative ncRNAs, especially at the 5′ and 
3′ ends of coding genes, there are biological and technical reasons for 
detecting abundant signal in the unannotated regions of the genome. 
Ribosome profiling (Ribo-seq) methods that sequence the ribosome-
protected fragments of mRNA have identified actively translated RNA in 
the 5′ UTRs of annotated protein-coding mRNA transcripts (Canestrari 
et al., 2020; D'Halluin et al., 2022; Sawyer et al., 2021; Shell et al., 2015; 
Smith et al., 2022). These unannotated sORFs may represent functional 
peptides or function to regulate the translation of the downstream tran-
script; however, it is impossible to tell the difference between a putative 
ncRNA and a sORF from RNA-seq signal alone. Additionally, the 3′ ends 
in mycobacterial RNA-seq data often lack clear signal termination (Dar 
et al., 2016; D'Halluin et al., 2022; Lejars et al., 2019) and processing of 
transcripts at the 3′ end may be the norm (Wang et al., 2019). Finally, 
polycistronic transcripts often include non-coding sequence between 
the genes of an operon, and this may contain functional elements and/
or processing sites (Martini et al., 2019).

The location of a transcription start site (TSS) in the 5′ end of a 
predicted transcript supports the biological relevance of a predicted 
ncRNA. However, the available lists of Mtb TSS sites (Cortes et al., 2013; 
Shell et al., 2015) have so far been mapped only in starvation and expo-
nential growth and may not include TSSs that are expressed under dif-
ferent experimental conditions. New TSS maps, published subsequent 
to this analysis may increase the number of predicted transcripts with 
a TSS (D'Halluin et al., 2022). Furthermore, functional ncRNA elements 
generated from the 3′ UTRs of coding genes through RNase processing 
would presumably lack a TSS. 3′ UTRs that are functionally indepen-
dent from their cognate coding sequence (CDS) have been identified 
in other bacteria (Desgranges et al., 2021; Menendez-Gil et al., 2020; 
Ponath et al., 2022). Therefore, it is important to consider predicted 
UTRs as separate annotated elements from protein-coding transcripts 
when quantifying differential expression.

To include a complete picture of the interaction of the non-
coding genome with coding genes involved in adaptation pathways, 
we have generated a novel set of ncRNA sequence-based predic-
tions (sRNAs and UTRs) from publicly available data sets using our 
in-house software package, baerhunter (Ozuna et al., 2019). Some of 
these predicted non-coding transcripts overlap with those of previ-
ous studies, but many represent novel predictions. The expression of 
these transcripts is quantified along with the protein-coding genes 
and used in network analysis to provide a more complete picture 
of the functional groupings involved in adaptation to environmen-
tal changes. Including a variety of culture conditions that replicate 
aspects of the host environment improves the chances that the ex-
pression of any ncRNA that is restricted to one or more conditions is 
included in the network (Ami et al., 2020).

1.2  |  Using WGCNA to implicate functional 
associations of non-coding RNA

Weighted gene co-expression network analysis (WGCNA) (Zhang & 
Horvath, 2005) has been widely used to identify functional groups 
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of genes, called ‘modules’, through the application of hierarchical 
clustering to differential expression levels of RNA transcripts in 
microarray or RNA-seq experiments. Recent studies have focussed 
entirely on the protein-coding portion of the transcriptome, using 
WGCNA with RNA-seq to cluster the differentially expressed genes 
of Mycobacterium marinum in response to resuscitation after hypoxia 
(Jiang et al., 2020) and Mycobacterium aurum infected macrophages 
(Lu et al.,  2021). Mtb microarray data have been used to cluster 
protein-coding genes that show differential expression among 
clinical isolates (Puniya et al., 2013) and in response to two differ-
ent hypoxic models to identify potential transcription factors (Jiang 
et al., 2016). Another recent network analysis, using a matrix decon-
volution method followed by module clustering, uses a large number 
of RNA-seq samples including deletion mutants, infection models 
and antibiotic-treated samples as well as restricted media and culture 
conditions (Yoo, et al., 2022). Here the authors identify 80 modules 
of protein-coding genes that each approximate an isolated source of 
variance, together estimated to account for 61% of the total variance 
seen in in the data set. This proportion is reportedly lower than re-
sults from similar analyses in other organisms, potentially due to the 
bias in the types of conditions available in the database and/or the 
complex nature of regulation in Mtb (Yoo, et al., 2022). However, the 
contribution of regulatory ncRNA elements may be a considerable 
unexplored source of variance in this complex system. Here we use 
an alternative, complementary approach by including ncRNA, as well 
as annotated protein-coding genes, in the modules.

In this study, WGCNA was applied to multiple Mtb H37Rv data 
sets covering 15 different culture conditions replicating various 
growth conditions, nutrient sources and stressors encountered 
in the host environment. We present a global view of the non-
coding genome across an extensive WGCNA network and inter-
rogate selected modules to identify functional groupings between 

protein-coding and non-coding transcripts, as well as between well-
characterised genes and those with little functional annotation. The 
correlation of the modules with the various conditions can identify 
participants in large-scale transcriptomic remodelling programs in 
response to changes in environmental conditions.

2  |  MATERIAL S AND METHODS

The overall workflow for this analysis is presented in Figure 1. All 
scripts for baerhunter, WGCNA and subsequent analysis are avail-
able at: https://doi.org/10.5281/zenodo.7709329.

2.1  |  Data acquisition and mapping

Data sets were downloaded from SRA (https://www.ncbi.nlm.nih.
gov/sra/docs/) or Array Express (https://www.ebi.ac.uk/array​expre​
ss/) using the accession numbers listed in Table 1. To minimise batch 
effects and ensure compatibility with RNA prediction software, we 
limited analysis to data sets with similar library strategies. Samples 
were included based on inspection to confirm that (1) samples 
were from monocultures of wild-type Mtb H37Rv strain and (2) 
sequencing was using a paired end, stranded protocol. Reads from 
samples that passed quality control thresholds were trimmed using 
Trimmomatic (Bolger et al., 2014) to remove adapters and low-quality 
bases from the 5′ and 3′ ends of the sequences. Trimmed reads were 
mapped to the H37Rv reference genome (GenBank AL123456.3) 
using BWA-mem in paired end mode (Li, Heng,  2013). All samples 
had >70% percent reads mapped with an overall mean of ~27.75 M 
mapped reads and a range of 3.97 to 60.68 M mapped reads per 
sample (Supporting Information Table S1, ‘Samples' tab).

F I G U R E  1  Analysis workflow.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

https://doi.org/10.5281/zenodo.7709329
https://www.ncbi.nlm.nih.gov/sra/docs/
https://www.ncbi.nlm.nih.gov/sra/docs/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/


384  |    STIENS et al.

2.1.1  |  Non-coding RNA prediction and 
quantification

Each data set was run through the R package, baerhunter (Ozuna 
et al., 2019), using the ‘feature_file_editor’ function optimised to the 
most appropriate parameters for the sequencing depth (https://doi.
org/10.5281/zenodo.7709329). ‘Count_features’ and ‘tpm_norm_
flagging’ functions were used for transcript quantification and to 
identify low expression hits (less than or equal to 10 transcripts per 
million) in each data set, which were subsequently eliminated. When 
viewed on a genome browser, coverage at the 3′ ends of putative 
sRNA and UTRs often appears to decrease gradually, with the ac-
tual end of the transcript appearing indistinct, compared to the 5′ 
end. Prokaryotic ncRNA transcripts may not demonstrate a clear 
fall-off of expression signal in RNA-seq due to incomplete RNAP 
processivity and pervasive transcription regulated by the changing 
levels of Rho protein observed in different conditions (Bidnenko & 
Bidnenko, 2018; Wade & Grainger, 2014). These very long predic-
tions can mask predicted transcripts in the same region from other 
samples, obscuring potentially interesting shorter transcripts ex-
pressed in different conditions. For this reason, transcripts longer 
than 1000 nucleotides were eliminated before combining the pre-
dictions between data sets. The predicted annotations for each data 
set were combined into a single annotation file, adding the union 
of the predicted boundaries to the reference genome for H37Rv 
(AL123456.3). Predictions that overlapped with annotated ncR-
NAs and UTR predictions that overlapped sRNA predictions from 
a different data set were eliminated. Transcript quantification was 
repeated on each data set using the resulting combined annotation 
file and the count data from each data set was merged into a single 
counts matrix.

DESeq2 v1.30.1 (Love et al.,  2014) was used on the complete 
counts matrix including the filtered baerhunter predictions to cal-
culate size factors, estimate dispersion and normalise the data with 
the regularised log transformation function (Supporting Information 
Figures S1 and S2). The normalised data was checked for potential 
batch effects using PCA plots and hierarchical dendrograms. Limma 
v3.46.0 (Ritchie et al.,  2015) ‘removeBatchEffect’ was applied with 
a single batch argument to remove batch effects associated with 
the first component (batching the data according to data set due 

to technical differences) while preserving differences between 
samples. The final hierarchical dendrogram, post-batch correction, 
indicates successful application as samples cluster by similar experi-
mental conditions, rather than by data set alone (Figure 2 compared 
to Supp figure S3). Samples from experiment PRJEB65014 continue 
to group together, but as they represent single replicates in unique 
conditions, it is difficult to estimate the influence of confounding 
batch effects for these samples. The normalised, batch-corrected 
data are accessible as an R data object at https://github.com/
jenja​ne118/​mtb_wgcna/​tree/maste​r/R_data and in a spreadsheet 
(Supporting Information Table S3).

2.1.2  |  Creation of the WGCNA network

The normalised and batch-corrected expression matrix was used 
to create a signed co-expression network using the R package, 
WGCNA v1.69 (Langfelder & Horvath, 2008), with the following pa-
rameters: corType = ‘pearson’, networkType = ‘signed’, power = 12, 
TOMType =  ‘signed’, minModuleSize = 25, reassignThreshold = 0, 
mergeCutHeight = 0.15, deepSplit = 2. In this type of network, the 
‘nodes’ are the genes, and the ‘edges’, or links, are created when 
gene expression patterns correlate. In contrast to unweighted binary 
networks where links are assigned 0 or 1 to indicate whether or not 
the genes are linked, in a weighted network the links are given a 
numeric weight based on how closely correlated the expression is. 
WGCNA first calculates the signed co-expression similarity for each 
gene pair. The absolute value of this correlation is raised to a power 
(determined by the user, based on a scale-free topology model that 
mimics biological systems) (Supporting Information Figure  S4) in 
order to weight the strong connections more highly than the weaker 
connections. The resulting similarity matrix is used to cluster groups 
of genes with strong connections to each other in a non-supervised 
manner (i.e. it does not use any previous information about gene 
groups or connected regulons). A cluster dendrogram is created 
(Supporting Information Figure S8) and closely connected branches 
of the dendrogram are merged into modules based on a cut-off value 
(also a parameter controlled by the user). Pairwise correlations were 
calculated between all of the genes in each module, and between 
module ‘hubs’ and all of the other genes in the module, using the 

TA B L E  1  Data sets used in analysis. Accession numbers from SRA and array express.

Data set
Number of 
samples Instrument

Library 
layout Library strand

Library 
strategy

Avg. spot 
length

Ribo 
depleted

PRJEB65014_3 3 Illumina MiSeq Paired end Reversely 
stranded

cDNA 150 Y

E-MTAB-6011

PRJNA278760 22 Illumina HiSeq 2000 Paired end Reversely 
stranded

cDNA 50 Y

GSE67035

PRJNA327080 15 Illumina HiSeq 2000 Paired end Reversely 
stranded

cDNA 180 Y

GSE83814

PRJNA390669 12 Illumina NextSeq 
500

Paired end Reversely 
stranded

cDNA 287 N

GSE100097
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Pearson correlation coefficient. The mean of these values for each 
module are available in Supporting Information Table S2, ‘pairwise_
correlation’ tab. The modules are defined by a ‘module eigengene’ 
(ME), which explains most of the variance in the expression values 
in the module. The connectivity of the MEs define the shape of the 
overall network (Supporting Information Figure  S9). The modules 
can then be tested for potential correlations with experimental con-
ditions while reducing the degree of penalties for multiple testing. 
In signed networks, correlation of the module with a condition can 
be in either the positive or negative direction, as modules include 
transcripts that are similar in both the degree and direction of corre-
lation, allowing for a more fine-grained analysis than with unsigned 
networks (Supporting Information Figure S10).

To test correlations of modules with experimental conditions, 
the individual RNA-seq samples were assigned to a condition based 
on the experimental description in the project metadata. Some 
of these conditions were shared among the different projects, so 
when appropriate, samples from different data sets were assigned 
the same condition, resulting in 15 tested conditions. For example, 
late-stage reaeration samples were tested along with exponential 
growth samples, and samples that tested hypoxia and cholesterol 
utilisation together were included in multiple conditions. Models of 
hypoxia differed between the RNA-seq projects, and these samples 
were assigned to different conditions: ‘hypoxia’ versus ‘extended hy-
poxia’ (Supporting Information Table S1, ‘Condition summary’ tab). 
Network correlations were made using robust biweight midcorrela-
tion tests and all p-values were corrected for multiple testing with the 

Benjamini-Hochberg (BH) method (Benjamini & Hochberg,  1995). 
Significance was evaluated as an adjusted p-value (padj) of <0.05.

2.2  |  Module enrichment

Modules were interrogated for enrichment for Gene Ontology 
(GO) terms (Ashburner et al.,  2000; The Gene Ontology 
Consortium, 2021), Clusters of Orthologous Groups (COG) (Galperin 
et al., 2021), KEGG pathway genes (Kanehisa et al., 2022), functional 
categories and literature searches for known regulons. GO terms, 
COG term and KEGG pathway enrichment were accessed program-
matically using the DAVID web service (Huang et al., 2009b, 2009a; 
Jiao et al., 2012) to query the list of protein-coding genes from each 
module for enrichment. Enrichment was determined using a modi-
fied one-sided Fisher's Exact Test (‘EASE’ score) with BH correction 
for multiple testing, with padj < 0.01 considered significantly enriched 
for a particular term, pathway or COG term. Enrichment for the 11 
functional categories from Mycobrowser annotation (Kapopoulou 
et al., 2011) was determined using a one-sided Fisher's Exact Test 
with BH correction for multiple testing. Modules were enriched for a 
particular functional category if padj < 0.01. Lists of genes associated 
with known regulons were mined from literature and enrichment 
was tested using the same one-sided Fisher's Exact Test as above 
with a padj < 0.01 cut-off for enrichment.

Non-coding RNA prediction, network analysis and subsequent 
data manipulation was performed with R (v4.0.5, 2021-03-31). All 

F I G U R E  2  Hierarchical dendrogram of rlog transformed and limma batch-corrected expression data by sample. The sample labels are 
coloured by data set, demonstrating that they are clustering by condition, rather than experiment.
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plots were made in R with the following packages: WGCNA (v1.69), 
dendextend (v1.15.2), ggplot2 (v3.3.5). Scripts and expression data 
are available at https://doi.org/10.5281/zenodo.7709329.

3  |  RESULTS AND DISCUSSION

3.1  |  Mtb expresses an extensive range of ncRNA 
transcripts over a wide variety of experimental 
conditions

Mycobacterium tuberculosis RNA-seq data sets were selected from 
publicly available data to find experiments using the wild-type 
H37Rv strain and representing a range of growth conditions the 
pathogen may encounter in a host environment. Four data sets 
passing our quality standards were subjected to our analysis pipe-
line (see Section 2) and included 52 samples under 15 different ex-
perimental conditions (Supporting Information Table S1, ‘Samples’ 
tab). The R package, baerhunter (Ozuna et al.,  2019), was used to 
predict ncRNA in intergenic regions, antisense RNA (opposite a 
protein-coding gene) and UTRs at both the 5′ and 3′ ends of genes 
by searching the mapped RNA-seq data for expression peaks out-
side of the annotated regions in the reference sequence for H37Rv. 
Non-coding RNA predictions from each data set were filtered 
for low expression and combined to create a single set of non-
overlapping annotations that encompassed all predictions made 
from any sample under any experimental condition. In total, 1283 
putative sRNAs were predicted (including both truly intergenic 
transcripts as well as those antisense to a protein-coding gene, 
or annotated RNA) and 1715 UTRs, which includes all transcribed 
regions outside of annotated protein-coding sequences at both 5′ 
and 3′ ends, as well as the non-coding regions between adjacent 
genes in operons. All putative ncRNA transcripts (sRNAs and UTRs) 
were searched for a TSS near the start of the predicted 5′ boundary 
using previously published annotations (Cortes et al.,  2013; Shell 
et al., 2015). Annotated TSSs were found within 20 nucleotides of 
the 5′ end in 43% of the predicted sRNA transcripts. Predicted 5′ 
UTRs had a TSS within 10 nucleotides of the start in 42% of cases, 
compared with 3% of the predicted 3′ UTRs. Where the UTR cov-
ered the entire sequence between two protein-coding regions (la-
belled as ‘between’ UTRs), 9% had a TSS in the first 10 nucleotides 
of the sequence (Table 2 and Supporting Information Table S2 ‘pu-
tative_sRNAs’, ‘putative_UTRs' tabs).

The predicted sRNAs were further annotated using the ac-
cepted nomenclature (Lamichhane et al.,  2013), which identifies 
the putative ncRNA relative to annotated gene loci and differently 
signifies truly intergenic sRNAs and those that overlap any part of a 
protein-coding region on the opposite strand. Most of the putative 
sRNAs are antisense to the protein-coding region of one or more 
genes, but 88 putative sRNAs have predicted boundaries that do 
not overlap an annotated transcript on either strand (or overlap an 
annotated transcript on the opposite strand by fewer than 10 nucle-
otides). This number is most probably an underestimate of the truly 

‘intergenic’ sRNAs in the genome, as many of the sRNA predictions 
appear overestimated at the 3′ end, effectively classifying them as 
an antisense RNA even though the 5′ half of the transcript does not 
overlap any genes on the opposite strand. Isoforms of annotated 
sRNAs can be subject to post-transcriptional processing to create 
an active transcript (Moores et al., 2017) and post-transcriptional 
processing of 3′ ends in vivo is more likely the norm for most pro-
karyotic transcripts (Wang et al., 2019). However, for our purposes, 
any RNA-seq transcripts that extend to overlap a protein-coding 
gene on the other strand in any data set will be labelled as antisense 
RNA.

The generated combined annotation file was used to quantify 
the expression of all 7046 expressed elements, including every 
annotated CDS, annotated ncRNA and predicted ncRNA, in each 
sample. Raw counts of expression varied greatly among the data 
sets due to different sequencing depth, as well as between some 
samples within data sets (as would be expected with different en-
vironmental conditions). The raw expression counts were trans-
formed using DESeq2's rlog function (Love et al., 2014), and plots 
of the dispersion of count data show that the median expression 
level between samples and between data sets has been normalised 
(Supporting Information Figures  S1 and S2). The distribution of 
the normalised expression levels of protein-coding regions alone 
shows consistent median expression levels across the entire data 
set; however, distribution of the normalised data restricted to 
putative sRNAs shows more variability, with certain conditions 
showing increased or decreased expression of these transcripts 
(Supporting Information Figures  S5–S7). This is not unexpected, 
given that several studies have identified pervasive transcription 
in hypoxic infection models, stationary phase and dormancy. This 
is accompanied by a concomitant increase in non-rRNA abun-
dance (especially antisense RNA transcripts) and in the number 
of predicted TSSs in Mtb and M. smegmatis (a fast-growing, non-
pathogenic strain) (Arnvig et al., 2011; Ignatov et al., 2015; Martini 
et al., 2019).

TA B L E  2  Tally of predicted expressed elements in the 
baerhunter-generated combined annotation file. 4018 protein-
coding genes were included in the annotation. ‘Between’ UTRs 
cover the entire sequence between two protein-coding regions.

Predicted element
Number 
predicted

With 
predicted TSSa 
(exponential and 
starvation)

Total sRNA 1283 553

sRNA ‘intergenic’ 88 23

sRNA ‘antisense’ 1195 530

Total UTRs 1715 273

5′ UTRs 475 200

3′ UTRs 602 16

‘Between’ UTRs 638 57

aTSS predictions from (Cortes et al., 2013; Shell et al., 2015).
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3.2  |  Module networks represent groups of co-
expressed genes and predicted non-coding RNA

3.2.1  |  Creation of the WGCNA network

A weighted co-expression network was created from the nor-
malised RNA-seq expression data using WGCNA (Langfelder & 
Horvath, 2008) (see Section 2). This program segregates transcripts 
with similar patterns of expression over a range of samples into mod-
ules. The modules represent sub-networks of connected genes, and 
functional relationships can be explored among the members of the 
individual modules. The ‘hub’ genes represent the most highly con-
nected genetic elements within a module and have highest module 
membership values. Module membership (MM) is measured by cor-
relation of the expression of the individual genes with the module 
eigengene (ME), the vector that best represents the variation in the 
module. This value is highly correlated with the level of interconnec-
tivity between the gene and the other genes of the module and can 
be used to find the best-connected genes in the module.

The signed co-expression network presented in this paper con-
sists of 54 different modules, assigning 99.3% of the expressed 
elements (CDS, putative UTRs and putative sRNAs) into 53 mod-
ules, with 46 unassigned elements clustered in the ‘grey’ module 
(Supporting Information Table S2, ‘Module_Overview’ tab). Module 
size ranged from 766 to 25 expressed elements. The modules (using 
the ME) were tested for correlations with the various conditions 
used in the RNA-seq experiments (see Materials and Methods). 
The RNA-seq data was categorised into 15 different experimental 
conditions in total with varying numbers of replicates (Supporting 
Information Table S1, ‘Condition Summary’ tab), therefore, a statisti-
cally significant correlation of modules with every condition was not 
expected. However, some modules do show significant correlations 
with conditions such as iron restriction, cholesterol media, hypoxia 
and growth phase and this can be informative when considering the 
association of the gene groups with biological processes (Figure 3).

3.2.2  |  Well-established regulons cluster together in 
single modules

In many cases, the gene membership of the modules includes well-
established regulons or groups of functionally related genes, estab-
lishing the biological relevance of the module sub-networks and 
proof of concept for the application of WGCNA on such a heterog-
enous data set. For example, the DosR regulon is a well-studied reg-
ulon associated with hypoxia and stress responses (Du et al., 2016; 
Rustad et al., 2008; Voskuil et al., 2004). 47 of 48 previously identi-
fied DosR-regulated genes are found in a single module, ‘cyan’, repre-
senting statistically significant enrichment of DosR-regulated genes 
in the module (one-sided Fisher's exact test, padj = 3.81e−53). The 
‘cyan’ module also includes 5 genes from the PhoP regulon, which is 
associated with hypoxic response and coordination with the DosR 
regulon (Gonzalo-Asensio et al.,  2008; Singh et al., 2020) and the 

DosR-regulated ncRNA, DrrS/MTS1338, known to be upregulated 
in hypoxic conditions (Ignatov et al.,  2015; Moores et al.,  2017). 
Unsurprisingly, the ‘cyan’ module is enriched for the GO term, ‘re-
sponse to hypoxia’; however, a statistically significant correlation 
was not seen with the hypoxia condition (though it is negatively 
correlated with the exponential growth condition, bicor =  −0.35, 
padj =  0.05) (Figure  3). The KstR regulon includes 74 genes under 
control of the TetR-type transcriptional repressor, KstR, known to be 
involved in lipid catabolism and upregulated during infection (Kendall 
et al.,  2007, 2010; Nesbitt et al.,  2010). The ‘royalblue’ module is 
significantly enriched for known KstR-regulated genes (one-sided 
Fisher's exact test, padj = 5.06e−30) with 30 of 72 KstR-regulated 
genes clustering together in the module. This module is enriched for 
genes of the KEGG pathway for steroid degradation (padj = 3.32e−10) 
and the GO term ‘steroid metabolic process’ (padj = 5.62e−16). The 
module shows statistically significant positive correlation for hy-
poxia (bicor = 0.35, padj = 0.03) and negative correlation with the 
low iron condition (bicor = −0.37, padj = 0.03) (Figure 3). Genes in-
volved in mycobactin synthesis are nearly all found in the ‘grey60’ 
module (one-sided Fisher's Exact test, padj =  1.23e−17), a module 
enriched for the KEGG pathways ‘siderophore metabolic processes’ 
and ‘arginine biosynthesis’. As these examples show, known associ-
ated genes are co-located in modules, which represent a functional 
group of genes that have co-regulated expression under various 
experimental conditions. The modules can be further explored to 
identify novel associations.

3.2.3  |  Predicted non-coding RNAs are enriched in 
certain modules

Putative sRNAs and/or predicted UTRs were distributed through-
out all modules in the network (Figure  4, Supporting Information 
Table S2, ‘Module_Overview’ tab). The number of predicted sRNAs 
were statistically enriched in seven modules and predicted UTRs 
enriched in another seven modules (one-sided Fisher's exact test, 
padj < 0.01, Supporting Information Table  S2, ‘Module_Overview’ 
tab). A roughly linear relationship between the number of CDS and 
the number of UTRs, is to be expected, given that UTRs are de-
fined by the baerhunter algorithm by their position at the start or 
end of protein-coding genes (Ozuna et al.,  2019). However, if the 
UTRs are positioned in an operon, there will be a smaller increase in 
the relative number of UTRs with an increasing number of protein-
coding genes, as UTRs between two protein-coding genes are 
predicted as a single UTR. As expected, the two modules that in-
clude the highest number of predicted operons (from OperonDB, 
Chetal & Janga, 2015), ‘turquoise’ and ‘brown’, have a lower relative 
proportion of UTRs; however, the ‘blue’ module, which includes 
15 complete predicted operons, is significantly enriched for UTRs 
(padj = 6.79e−21) (Figure 5).

Within the module sub-networks, the tight co-expression of 
protein-coding genes and ncRNA is reflected by the number of 
ncRNA found among the most connected elements in the module. 
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The ‘hub’ elements are those with the best correlation to the ME, 
and therefore, the most tightly connected elements in the individual 
module networks. In 14 modules, ncRNA (both predicted and anno-
tated) make up more than half of the elements with module member-
ship values (MM) ≥ 0.80 (our threshold for identifying hub elements) 
(Supporting Information Table S2, ‘Hub_info’ tab). These associations 
may implicate ncRNA as co-conspirators in regulatory pathways im-
plemented to adapt to conditions such as hypoxia, cholesterol media 
and low iron. The 30 annotated ncRNAs in the Mtb reference ge-
nome (AL123456.3) are spread over 20 modules, with 10 of them 

hubs of the module, and one unassigned (‘grey’ module) (Supporting 
Information Table  S2, ‘Annotated ncRNA’ tab). For example, Ms1/
MTS2823, observed to be the most abundantly expressed ncRNA in 
expression studies over various stress conditions (Arnvig et al., 2011; 
Arnvig & Young,  2012; Ignatov et al.,  2015; Šiková et al.,  2019), 
is a hub element in a module that is positively correlated with 
cholesterol-containing media conditions (‘darkgreen’, bicor  =  0.35, 
padj = 0.04) (Figure 3). This module is significantly enriched for KEGG 
pathways, including: Pyruvate metabolism (padj = 3.1e−3) and two-
component systems (padj = 3.8e−3), and GO terms: plasma membrane 

F I G U R E  3  Heat map of correlation of module eigengene (ME) of each module with selected experimental conditions. Correlation was 
calculated using biweight midcorrelation (bicor) and p-values were adjusted for multiple testing (BH-fdr). Positive correlation is red, negative 
correlation is blue. Non-significant correlations in grey (padj > 0.05).

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



    |  389STIENS et al.

respiratory chain complex II and plasma membrane fumarate reduc-
tase complex. Mcr7/ncRv2395A, found to be part of the PhoP regu-
lon (Solans et al., 2014), is a hub in the ‘violet’ module enriched for lipid 
metabolism and PE/PPE functional categories, correlated positively 
with growth in cholesterol (bicor = 0.35, padj = 0.04) and butyrate 
(bicor =  0.41, padj =  0.02) and negatively correlated with low iron 
(bicor = −0.36, padj = 0.03) (Figure 3). F6/ncRv10243/SfdS, a sRNA 
upregulated in starvation and mouse infection models, is thought to 
be involved in regulating lipid metabolism and long-term persistence 
(Houghton et al., 2021). This ncRNA is a hub in a module found to be 
enriched in ‘lipid metabolism’ genes (‘saddlebrown’) and found to be 
correlated positively with reaerated culture (bicor = 0.38, padj = 0.04) 
and butyrate (bicor = 0.4, padj = 0.02) conditions (Figure 3).

3.2.4  |  UTR and adjacent ORF expression differ in 
over 50% of cases

We were interested to see how many of the predicted UTRs were 
assigned the same module as the adjacent ORF—indicating whether 

the ORF and its adjacent UTR were co-regulated. Intuitively, the 
UTR of a protein-coding gene would be expected to be expressed as 
a single transcript along with the ORF and show similar expression 
patterns. However, both 5′ and 3′ UTRs can act independently of the 
attached ORF and RNA abundance in RNA-seq experiments reflects 
both transcription activity and transcript stability. For example, 
some 5′ UTRs are known to contain regulatory elements, such as ri-
boswitches, that alter the transcription of the downstream ORF (Dar 
et al., 2016; Kipkorir et al., 2021; Schwenk & Arnvig, 2018; Warner 
et al.,  2007), whereas sRNAs cleaved from 3′ UTRs have been 
shown to regulate the stability of the remaining transcript--with dif-
ferent half-lives as a result (Chao et al., 2012; Dar & Sorek, 2018; 
Menendez-Gil & Toledo-Arana, 2021). Of the baerhunter -predicted 
UTRs labelled 5′ and 3′, the UTRs co-segregated with the ORF they 
were closest to in fewer than half of cases (Table 3). We would ex-
pect correctly identified 5′ UTRs to utilise a TSS (whether or not 
there is a known predicted TSS), whereas it appears functional 3′ 
UTRs are more likely to be cleaved from the longer mRNA tran-
script (Dar & Sorek,  2018; Menendez-Gil & Toledo-Arana,  2021; 
Ponath et al., 2022). Our data confirms this: transcripts classified as 

F I G U R E  4  Relative proportion of annotated CDS, predicted UTRs and predicted sRNAs in each module, ordered by module size.
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5′ UTRs are much more likely to have a predicted TSS in the first 
10 nucleotides than transcripts classified as 3′ UTRs (42% vs. 2.7%). 
Approximately 9% of the UTRs predicted to be between ORFs (la-
belled, ‘Between’ UTRs) have predicted TSS (Table 3). The presence 
of a TSS in the first 10 nucleotides of the predicted UTR appeared 
to have little bearing on whether or not the UTR and its adjacent 
ORF are assigned to the same module, with 43% of 5′ and 19% of 
3′ UTRs with a predicted TSS co-assigned with their adjacent ORF 
partner. 42% of the ‘Between’ UTRs do not segregate with either 
the ORF upstream or downstream, indicating their expression is, to 
some degree, independent of either adjacent ORF. 195 UTRs were 
found to be hubs in modules independent of their adjacent ORF(s), 
with 27 including a predicted TSS. All ‘independent’ UTRs are found 
in Supporting Information Table S2, ‘independent_UTRs’ tab.

3.2.5  |  Antisense RNAs are hubs in modules 
independent of cognate ORF

It has been observed that the overall abundance of antisense RNA 
and other non-ribosomal RNA increases upon exposure to stress 
such as hypoxia and nutrient restriction (Arnvig et al., 2011; Ignatov 
et al., 2015), and in our network, ncRNA are well-connected in vari-
ous modules that include known transcription factors and gene 
regulons associated with stress responses. Not unexpectedly, very 
few (5%) of the predicted antisense transcripts were assigned to the 
same module as the protein-coding region overlapping on the op-
posite strand (choosing the most downstream locus in the event of 
multiple overlapping ORFs), signifying distinct patterns of expression 
for transcripts on opposite strands, possibly due to independent or 

F I G U R E  5  Number of UTRs in some 
modules are not in direct proportion 
to the number of coding genes. Plot of 
number of UTRs against number of CDS 
in each module. Grey shading indicates 
confidence interval of 0.95.

Total (excluding 
grey)

Number 
with TSS

Number in 
same module as 
adjacent ORF

Proportion of UTRs 
in same module as 
adjacent ORF (%)

5′ UTR 471 198 173 DS 37

3′ UTR 597 16 254 US 43

BTWN UTR 633 56 112 DS 18

116 US 18

137 both 22

Note: TSS indicates presence of annotated TSS in first 10 nucleotides of predicted UTR (Cortes et 
al., 2013; Shell et al., 2015).
Abbreviations: DS, downstream; US, upstream.

TA B L E  3  UTRs and module assignment 
of adjacent ORFs excluding those in ‘grey’ 
module (unassigned transcripts).
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bidirectional promoters and/or overlapping transcription termination 
sites. Bidirectional promoters have been identified in multiple prokary-
otic genomes, and competition for RNA polymerase (RNAP) binding 
among divergently transcribed sense/antisense pairs may function as a 
mechanism for regulation of gene expression (Ju et al., 2019; Warman 
et al., 2021). Long 3′ UTRs that overlap with converging protein-coding 
genes on the opposite strand (or with the 3′ UTR) can create an ‘exclu-
don’ regulatory arrangement, where transcription of the two opposite 
mRNAs is simultaneously regulated by RNase targeting, or mutually 
exclusive due to RNAP collision (Sáenz-Lahoya et al.,  2019; Toledo-
Arana & Lasa, 2020). Examining the module groupings of the antisense 
RNAs and their base-pairing target on the other strand may provide 
insight on which genes are regulated by antisense transcription.

3.3  |  Focus on selected module networks

The large-scale transcription analysis presented here is useful for 
the more global analysis of the overall trends related to ncRNA and 
transcription, but there is a great deal of information to be gleaned 
by more fine-grained inspection of individual module groupings. To 
discover novel associations in such a large and complex data set, 
we have selected a few modules for closer examination, focussing 
on those that contain gene groups or regulons related to the tested 
conditions. Many of the modules that contain interesting correla-
tions or gene regulon enrichments also include an abundance of pu-
tative sRNAs and UTRs. Using the ‘guilt by association’ principle, we 
can hypothesise that the well-connected ncRNAs found among the 
module hub elements have a role in transcriptional ‘remodelling’ in 
response to changes in environmental conditions such as growth on 
cholesterol-containing media, restricted iron or hypoxia.

3.3.1  |  Detoxification-linked proteins cluster 
in the module best correlated with cholesterol 
media condition

The ‘darkolivegreen’ module showed positive correlation with the 
cholesterol media condition (bicor = 0.57, padj = 5.0e−04) and nega-
tive correlation with low iron (bicor = −0.48, padj = 0.001) (Figure 3). 
Many protein-coding genes involved in detoxification pathways 
are hubs in the module, including several encoding transmembrane 
proteins such as the mmpL5-mmpS5 efflux pump operon (Rv0676c-
Rv0677c), as well as the next gene downstream, Rv0678, which was 
identified as part of a ‘core lipid response’ in differential expression 
analysis in lipid-rich media (Aguilar-Ayala et al., 2017). The 5′ UTR 
for Rv0677c and 3′ UTRs for Rv0676c and Rv0678 are also hubs. 
This operon is involved in siderophore transport and expressed in 
cholesterol and lipid-rich environments (Aguilar-Ayala, et al., 2017; 
Pawełczyk et al., 2021). The module contains several Type II toxin-
antitoxin systems including VapBC12 (Rv1720c1721c), VapBC41 
(Rv2601A-2602), RBE2 (relFG, Rv2865-2866) and vapB36 and 
vapB40, which may have roles in adaptation to cholesterol and 

the evolution of persisters (Ramage et al., 2009; Sala et al., 2014). 
VapBC12, specifically, has been shown to inhibit translation and 
promote persister phenotypes in response to cholesterol (Talwar 
et al., 2020). Other detoxification-linked genes in the module, such 
as the ABC-family transporter efflux system, Rv1216c-1219c, have 
also been implicated in transcriptomic remodelling in response to 
cholesterol (Aguilar-Ayala et al., 2017; Pawełczyk et al., 2021).

Two adjacent predictions, the 3′ UTR for Rv1772 (putative_
UTR:p2006948_2007063) followed by ncRv1773/putative_sR-
NA:p2007213_2007377, are hubs in the ‘darkolivegreen’ module. 
Together, they extend to overlap the antisense strand of a large por-
tion of Rv1773c, a probable transcriptional regulator in the IclR fam-
ily, found in a different module (‘turquoise’). The 3′ UTR for Rv1772 
has been previously identified as an abundant antisense transcript 
during exponential growth (Arnvig et al.,  2011). The start of the 
predicted sRNA transcript has no known TSS and could instead 
be an extension of the predicted 3′ UTR (Supporting Information 
Figure S11). (When combining predicted annotations from different 
data sets, long predicted UTRs that overlapped shorter sRNA pre-
dictions were discarded, see Methods). In E.coli, the IclR family tran-
scriptional regulators demonstrate both activating and repressing 
activities on targets such as multidrug efflux pumps and the aceBAK 
operon, which regulates the glyoxylate shunt (Zhou et al.,  2012). 
Icl2a (Rv1915) is one of the Mtb isoforms of the isocitrate/methyl-
citrate lyase gene, aceA, and may be regulated by Rv1773c, as seen 
in E.coli. Icl2a, Rv1772, its predicted UTR and the antisense RNA 
(ncRv1773) are all hubs in the ‘darkolivegreen’ module. Icl2a has been 
observed to be upregulated with cholesterol as the sole carbon 
source and likely has a second function as part of the methylcitrate 
cycle to convert the fatty acid metabolites propionate and propi-
onyl CoA to less toxic compounds (Bhusal et al., 2017; Pawełczyk 
et al., 2021).

3.3.2  |  Module correlated with reaeration 
after non-replicating persistence includes genes for 
amino acid synthesis and cell wall remodelling

The module, ‘saddlebrown’ is enriched for GO terms for various 
amino acid metabolic processes and COG ‘lipid metabolism’. It is 
positively correlated with reaeration after non-replicating per-
sistence (bicor = 0.38, padj = 0.04) and butyrate-containing media 
(bicor = 0.4, padj = 0.02) (Figure 3). This pairing of upregulation of 
aminoacid synthesis and upregulation of the synthesis of cell wall 
lipids has been observed in the ‘lag phase’ after reaeration for in-
creased protein synthesis (Du et al., 2016). The hubs of the ‘saddle-
brown’ module include several predicted sRNAs, and the annotated 
sRNA, F6. F6/ncRv10243/SfdS is a sigF-dependent ncRNA, which 
has been shown to be induced in nutrient starvation, oxidative 
stress, acid stress (Arnvig & Young, 2009; Houghton et al., 2021) and 
the fatty acid hypoxia model (Del Portillo et al., 2019). In addition 
to being expressed from its own promoter, F6/SfdS has been pro-
posed to be co-transcribed with the upstream gene fadA2 (Rv0243), 
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a probable acetyl-CoA acyltransferase; however, fadA2 is clustered 
in a different module from SfdS (‘darkred’).

One of the predicted sRNAs among the ‘saddlebrown’ 
module hubs is antisense transcript ncRv2489/putative_sr-
na:p2801108_2801678 with a TSS at 2801108. This overlaps 
the 3′ end of PE-PGRS43 (Rv2490c) (Figure 6). There is a short 
reading frame (30 nucleotides, 10 amino acids) initiating from 
a Methionine at this TSS that suggests a possible dual-function 
sRNA or sORF with independent function. A shorter, possibly lea-
dered, sORF was predicted by Shell et al. (2015) that falls within 
this region (2801238.0.2801261). The TSS for the predicted sRNA 
overlaps the 5′ end of Rv2489c, a short, hypothetical ‘alanine-rich 
protein’. The TSSs for these convergently overlapping transcripts 
are 42 nts apart and may involve RNAP collision if both are tran-
scribed simultaneously. Therefore, transcription of the predicted 
sRNA could impact either Rv2489c and/or PE-PGRS43 expression 
through two different mechanisms. Another hub sRNA in ‘saddle-
brown’ includes ncRv1450/putative_sRNA:p1630466_1631246, 
which has a TSS at 1630466 and is likely to be an intergenic tran-
script between two divergently transcribed genes on the opposite 
strand, tkt (Rv1449c) and PE-PGRS27 (Rv1450c), both of which 
are assigned to different modules. The 3′ end of the prediction 
includes possible run-on transcription antisense to the 3′ end of 
PE-PGRS27.

The fatty acid desaturase gene, Rv3229c (desA3) is a hub in the 
module, but without its operon partner, Rv3230c. However, the 
module does contain an antisense sRNA in this region, ncRv3230/
putative_sRNA:p3607084_3607499, which is antisense to the 3′ 
end of Rv3230c, but lacks a known TSS. Interestingly, Rv3230c 
has an internal transcription termination site predicted at 3607550, 
which coincides with the 3′ end of the antisense sRNA (D'Halluin 
et al., 2022) (Supporting Information Figure S12). Another hub an-
tisense sRNA, putative_sRNA:p3608313_3608866/ncRv3231c, 
overlaps the 3′ end of the upstream gene, Rv3231c, and has a pre-
dicted TSS at 3608313.

3.3.3  |  Slow-growth-correlated module is 
associated with transcriptional remodelling and metal 
ion homeostasis and enriched for sRNAs

The ‘green’ module contains genes that are associated with 
transcriptional remodelling in response to hypoxic or station-
ary growth conditions. It is positively correlated with hypoxic 
(bicor = 0.49, padj = 0.004) and stationary (bicor = 0.4, padj = 0.01) 
growth conditions, negatively correlated with exponential growth 
(bicor = −0.44, padj = 0.01) (Figure 3) and is enriched for GO terms 
related to response to metal ions as well as regulation of gene 

F I G U R E  6  Antisense sRNA, ncRv2489/putative_srna:p2801108_2801678, (magenta bar) overlaps two transcripts and may encode a 
short peptide. TSS for sRNA indicated in red and corresponding amino acid highlighted in pink. Sample SRR5689230 from PRJNA390669, 
exponential growth on cholesterol and fatty acid media. Strand coverage using the ‘second’ read of each pair mapping to the transcript 
strand, visualised using Artemis genome browser (Carver et al., 2012).
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expression. The ‘green’ module contains at least 30 known tran-
scription factors, with 14 of them hubs in the module, including 
FurA, Zur and sigma factor, SigH, as well as being enriched for SigH 
regulon genes. Three of the most well-connected transcription 
factors (furA, smtB and zur) are involved in iron uptake and utilisa-
tion, and the Zur-regulated ESAT-6 secretory proteins, esxR and 
esxS (Rv3019c, Rv3020c), are also present in the module, linking 
metal homeostasis with response to hypoxia (Maciąg et al., 2007; 
Zhang et al.,  2020). Two chaperonin protein targets of the non-
coding RNA F6/Sfds, GroES (Rv3418c) and GroEL2 (Rv0440) are 
in the module, as well as the chaperonin protein, hsp (Rv0251c), 
all of which are part of the phoPR virulence-regulating system 
(Gonzalo-Asensio et al., 2008, 2014).

The ‘green’ module is enriched for sRNAs (padj = 0.011). Among 
the best-connected, are 27 predicted antisense RNAs. One of these 
hubs, putative_sRNA:p1404640_1404929/ ncRv1257 is antisense 
to the 3′ end of Rv1257c, a probably oxidoreductase, and another 
(putative_sRNA:p1771044_1771498/ncRv1546) is antisense to the 
5′ end of a trehalose synthetase, treX. Both of these sRNAs have 
TSSs and are expressed differentially among the tested conditions. 
Control of reactive oxygen species and synthesis of trehalose inter-
mediates are important for cells in to survive in hypoxic conditions 
(Eoh et al., 2017; Harold et al., 2019) and antisense RNA may be in-
volved in fine-tuning these responses.

Another antisense RNA, ncRv1358c (putative_sRNA:m1530046_​
1530745) has a TSS near its start and is found antisense to Rv1359. 
Rv1359 and the upstream gene, Rv1358, on the opposite strand are 
very similar to each other (43.7% identity in 197 aa overlap) and to 
another gene elsewhere in the genome, Rv0891c (48.5% identity in 
204 aa overlap) (Kapopoulou et al., 2011). All three genes are pos-
sible LuxR family transcriptional regulators, which are thought to 
be involved in quorum-sensing adaptations and contain a probable 

ATP/GTP binding site motif (Chen & Xie, 2011; Modlin et al., 2021) 
and are found in different modules. Expression of this antisense 
sRNA appears to suppress the expression of the transcript on the 
opposite strand to varying degrees in all conditions (Figure 7). In the 
cholesterol and fatty acid media samples, expression of a shorter 
transcript appears to begin inside the Rv1359 ORF, where the tran-
script is not overlapped by the antisense transcript, possibly utilising 
an internal TSS at 1530774.

3.3.4  |  Metal ion homeostasis genes cluster 
in module that is negatively correlated with the 
hypoxia condition

The ‘darkred’ module is negatively correlated with the hypoxia con-
dition (bicor = −0.46, padj = 0.005, Figure 3). This module contains 
most of the ESX-3 genes (Rv0282-Rv0292) related to siderophore-
mediated iron (and zinc) uptake in Mtb (Serafini et al., 2013; Zhang 
et al.,  2020), with nine of these representing hubs in the module. 
The module is enriched for the PE/PPE functional category, and in-
cludes the two genes preceding the ESX-3 genes, Rv0280 (PPE3) 
and Rv0281 (a possible S-adenosylmethionine-dependent methyl-
transferase involved in lipid metabolism, though its position in the 
genome would suggest regulation could be linked to ESX-3 [Lunge 
et al., 2020]), and an ESX-5 gene, Rv1797 (eccE5). The module also 
contains another Zur-regulated gene, Rv0106, which is a potential 
zinc-ion transporter (Zondervan et al., 2018). Among the hubs of the 
module are several genes related to lipid metabolism and fatty acid 
synthesis, including: probable triglyceride transporter, Rv1410; the 
operon consisting of Rv0241c (htdX), Rv0242c (fabG4), and Rv0243 
(fadA2) (Dutta, 2018), and a gene involved in the pentose phosphate 
pathway, zwf2 (Rv1447c).

F I G U R E  7  Expression of antisense transcript putative_sRNA:m1530046_1530745 (magenta bar) seems to suppress the expression of 
most of Rv1359 and Rv1358 in cholesterol and fatty acid media. An internal TSS exists inside the Rv1359 CDS at 1530774 near where 
expression begins. Note, prediction of an individual sRNA is an aggregate of predictions under different conditions, so will not always match 
the expression of the sRNA in any particular sample. Sample SRR5689230 from PRJNA27860. Strand coverage using the ‘second’ read of 
each pair mapping to the transcript strand, visualised using Artemis genome browser (Carver et al., 2012).
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There are some well-connected ncRNAs in the ‘darkred’ mod-
ule, including a predicted antisense RNA to Rv0281, ‘ncRv0281c’ 
(putative_sRNA:m341328_342075). This putative sRNA has a 
predicted TSS at the 5′ end and is transcribed divergently from 
Rv0282 (eccA3). This is one of the rarer cases where the antisense 
transcript and cognate protein-coding gene (Rv0281) are clustered 
in the same module. The prevailing direction of transcription at 
this locus may be a result of competition for RNAP binding at a 
bidirectional promoter in the predicted 5′ UTR of Rv0282, which 
also clusters in the module. There are several UTRs in the module 
hubs, including a 3′ UTR for the gene Rv1133c, metE (also found 
in the module). This UTR was previously identified as abundantly 
expressed in exponential culture (Arnvig et al.,  2011). There is 
a 3′ UTR for Rv0292 (eccE3, also a hub in the ‘darkred’ module) 
that is antisense to a large part of the 3′ end of Rv0293c, which 
has a converging orientation to Rv0292 (Supporting Information 
Figure S13). Rv0293c is a hub in a different module (‘lightgreen’) 
along with its 3′ UTR. Overlapping 3′ ends of genes could func-
tion to regulate transcription, possibly by bidirectional termination 
brought about by RNAP collision, or function post-transcriptionally 
by influencing transcript stability (Ju et al., 2019; Vargas-Blanco & 
Shell, 2020).

3.3.5  |  Module enriched for sRNAs and PE/PPE 
genes is correlated with stationary condition

The ‘darkturquoise’ module is enriched with sRNAs, with 33 hub 
sRNAs. It is negatively correlated with the low iron condition 
(bicor =  −0.37, padj =  0.03) and positively correlated with station-
ary growth (bicor =  0.43, padj =  0.007). The genes of the module 
are enriched for the PE/PPE functional category and there are 
several PE/PPE genes among the hubs. The previously annotated 
ncRNA, B11 (also known as 6C or ncRv13660c), is one of the most 
well-connected elements in the module and overexpression of 
B11 in M.smegmatis has been shown to cause growth arrest and 
downregulation of a large set of genes including those involved in 
cell division and virulence, including all the ESX-1 secretion system 
genes (Mai et al.,  2019). Mcr11 is also found in the module. This 
sRNA is known to respond to the second messenger 3′,5′-cyclic 
adenosine monophosphate and has been found to be expressed 
in hypoxic Mtb cultures and in a mouse infection model (Girardin 
& McDonough,  2020). Mcr11 regulates the expression of several 
genes that adapt central carbon metabolism during slow-growth 
conditions (Girardin & McDonough, 2020).

There are two well-connected intergenic sRNAs predicted in 
the ‘darkturquoise’ module. Putative_sRNA:p1164036_1164162/
ncRv11040 is located between PE8 and a possible transposase, 
Rv1041c, but on the antisense strand. There is a predicted TSS at 
1163697, 39 nucleotides upstream of the predicted start sequence. 
This transcript is in a converging orientation to the transposase and 
may be instrumental in regulating horizontal gene transfer (Ellis & 
Haniford, 2016; Lejars et al., 2019). The other intergenic hub is also 

upstream from possible transposase, Rv3114, but in diverging orien-
tation on the opposite strand. The TSS is at 3481459, and the sRNA 
is within a predicted ‘MT-complex-specific’ genomic island associ-
ated with virulence genes (Becq et al., 2007). Rv3112-14 are clus-
tered in the ‘salmon’ module.

There are several interesting ‘independent’ UTRs that are well-
connected in the module, but their assumed transcriptional part-
ner clusters in another module. There are several predicted TSS's 
and transcriptional termination sites (TTS) (D'Halluin et al.,  2022) 
within the predicted boundaries of a 3′ UTR for the gene Rv2081c 
(putative_UTR:m2337218_2338064) and a predicted sORF based 
on ribosome profiling (Smith et al.,  2022) (Figure  8). The adjacent 
gene, Rv2081c, is in the ‘cyan’ module along with most of the DosR-
regulated genes. The 5′ UTR of Rv0281c is also a hub in the module 
and contains predicted TSSs, TTS and sORF. It would be interesting 
to discover whether these UTRs could have dual functions as regu-
latory RNA elements as well as being translated into short peptides. 
Rv2081c is a conserved membrane protein containing a simple se-
quence repeat of 8 C's and has been identified as a source of se-
quence variation in Mtb sputum and culture (Shockey et al., 2019; 
Sreenu et al., 2007).

The best-connected elements in the module are antisense 
sRNAs, including putative_sRNA:p2081553_2082178/ncRv1835, 
with a predicted TSS at its start. It is antisense to Rv1835c, the 
gene for a putative serine esterase clustered in the ‘mediumpurple3’ 
module, in particular to the 3′ end of the peptidase domain (Xaa-Pro 
dipeptidyl-peptidase-like domain) (Blum et al.,  2020). Putative_sR-
NA:m2497549_2498369/ncRv2225c, with a TSS at 2498368, is 
antisense to Rv2225, coding for a 3-methyl-2-oxobutanoate hy-
droxymethyltransferase PanB. This gene clusters in the in ‘turquoise’ 
module.

3.4  |  Comparison with other global Mtb networks

Other regulatory networks have been developed for Mtb that use 
transcriptomic data to cluster protein-coding genes according to 
their responses to environmental conditions (Peterson et al., 2014; 
Yoo et al.,  2022). Peterson et al. (Peterson et al.,  2014), utilises a 
‘biclustering’ algorithm, cMonkey, that clusters genes and conditions 
based on co-expression in publicly available microarray data and 
the presence of common transcription factor binding motifs (Reiss 
et al.,  2006). The network is pruned and shaped by adjusting the 
weights of particular lines of evidence a priori input such as bind-
ing motifs, protein homology, operon groupings and known protein–
protein interactions (PPIs) (Peterson et al., 2014; Reiss et al., 2006). 
This network's ability to assimilate both a priori and transcriptomic 
expression data was tested by its ability to recapitulate known as-
sociations and groupings found by overexpression of transcription 
factors and identification of transcription factor binding motifs. 
Thus, a ‘parsimonious’ network was created that uncovers novel 
transcriptomic responses to particular environmental conditions 
that are validated by several lines of evidence (Peterson et al., 2014; 
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Reiss et al., 2006). This approach differs significantly from ours in 
several important ways. Firstly, the WGCNA network we present 
relies entirely on transcriptomic data alone—RNA-seq, in particu-
lar. RNA-seq is more sensitive than microarray data and is able to 
detect the expression of novel transcripts that may represent non-
coding or unknown protein-coding RNA transcripts. Our network is 
more comprehensive in an attempt to include every detectable RNA 
transcript found in the included RNA-seq data sets. These novel 
transcripts naturally lack any a priori data to shape or reinforce as-
sociations, and we have not applied any filtering methods other than 
evaluating the strength of module membership.

A more recent approach uses a large number of RNA-seq data 
sets with deconvolution methods to reduce the noise in the network 
and find clusters of protein-coding genes (‘iModulons’) that together 
account for significant chunks of variation in expression levels in re-
sponse to environmental conditions (Yoo et al., 2022). In both the 
Yoo et al and Peterson et al studies, genes can be members of more 
than one module, unlike our WGCNA network where all transcripts 
are assigned only to a single module, making any direct compari-
son of the entire network of limited value. However, several of the 
modules highlighted in the previous studies do show considerable 
overlap with the protein-coding members of some of the modules 
presented here, especially in modules associated with response to 
hypoxia or cholesterol media. For example, a comparison of the 
hypoxia-linked, ‘DevR’, iModulon and the protein-coding genes of 
the ‘cyan’ module with a MM cut-off of 0.7, reveals 34 overlapping 
genes between them. All 13 of the hypothetical proteins in the ‘cyan’ 
hubs are also in the ‘DevR’ iModulon. The hypoxia-linked ‘Bicluster 
182’ shares 7 genes with both the iModulon and the ‘cyan’ module 

(Figure 9a). The kstR regulon-enriched module, ‘royalblue’, discussed 
earlier, shares 15 hub genes with the Rv0681 iModulon and a 18 
genes with the group of three biclusters identified in the Peterson 
et al study as enriched for steroid ring degradation (Biclusters 199, 
200 and 337) (Figure 9b).

As all of the RNA-seq data sets included in this WGCNA analysis 
are also included in the iModulon analysis, overlaps between these 
two studies are perhaps not surprising. An important distinction be-
tween our study and these other approaches is that the network 
presented here seeks to identify not just groupings of protein-
coding genes linked by transcriptional regulation, but associations 
involving non-coding RNA, as well. For example, the protein-coding 
hub genes of the ‘violet’ module overlap with the ‘VirS’ iModulon, 
which was linked in Yoo et al.  (2022) to response to acid environ-
ment and remodelling of cell membrane. In addition to the coding 
genes that overlap the ‘VirS’ iModulon, the hubs of the ‘violet’ mod-
ule include the non-coding RNA, Mcr7. Mcr7 is a ncRNA known to be 
activated by the PhoPR regulon, which responds to acid pH (Solans 
et al., 2014). The hypothetical protein-coding transcript that over-
laps this locus, Rv2395A, is found in the ‘PhoP’ iModulon. The ‘vio-
let’ module also includes several UTRs among the hub members that 
may represent important players in this adaptation response. Thus, 
our approach adds value to these previous methods by including un-
annotated elements that may have roles in the regulation of gene 
expression.

One advantage of the deconvolution method over WGCNA is 
that by filtering for only the strongest associations and allowing 
genes to be members of more than one iModulon, the modules are 
less ‘noisy’. However, deconvolution methods require extremely 

F I G U R E  8  The 5′ and 3′ UTRs for Rv2081c (green bars) are overlapped by predicted sORFs (yellow bars). (Cortes et al., 2013; Smith 
et al., 2022). Shown is sample SRR5689224, exponential growth, from PRJNA27860. Strand coverage using the ‘second’ read of each pair 
mapping to the transcript strand, visualised using Artemis genome browser (Carver et al., 2012).
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large numbers of samples to perform well, may be subject to batch 
effect issues between experimental data sets and characterise a 
limited proportion of the protein-coding transcripts expressed by 
Mtb (Saelens et al., 2018; Yoo, et al., 2022). In order to include pre-
dicted ncRNA in the network, a significant degree of quality control, 
parameter adjustment and manual curation is required, limiting the 
number of data sets that could be included in our analysis. Including 
more data would most likely strengthen the correlations with cer-
tain conditions and improve the overall specificity of the WGCNA 
modules.

The gene modules presented here are somewhat ‘blunt-force 
instruments’ applied to transcripts that are part of overlapping, co-
ordinated responses to various environmental cues, but restricted 
to a single module grouping. Recent work exploring differentially ex-
pressed genes in response to various environmental conditions have 
revealed highly integrated adaptation responses. In other words, 
a single environmental change, for example hypoxia or growth on 
fatty acids or cholesterol, stimulates transcriptomic remodelling 
across diverse cellular functions, perhaps acting as cues to stimulate 
anticipatory pathways and ready the pathogen for the next chal-
lenge (Eoh et al., 2017; Gerrick et al., 2018). Confounders such as 
dual-function, ‘moonlighting’, proteins may weaken the correlation 
of a module with a specific condition and may create noise in oth-
erwise well-connected modules. Rather than using an arbitrary cut-
off to decide which module associations are relevant, we utilise a 
flexible measure of module membership that allows the user to filter 
the strength of associations. In our discussion, we used a relatively 
stringent threshold ‘module membership’ score of 0.8 to identify the 
transcripts in each module that have the tightest correlation to the 
module eigengene, but there has been no pruning or editing of the 
modules, in order to avoid any loss of information.

An important advantage of including ncRNA in a co-expression 
network is the chance to observe post-transcriptional groupings 
that result from adaptive responses, as well as the transcriptional 
responses. By focussing on the best-connected transcripts in var-
ious modules, unexpected connections between genes of diverse 

pathways can be discovered. The work presented here confirms that 
ncRNA are important players in adaptation responses, and the ex-
istence of informative protein-coding co-expression networks can 
help to implicate these transcripts in adaptive responses and provide 
context for their activity.

4  |  CONCLUSION

This paper presents a large-scale network analysis of over 7000 
transcripts expressed by Mtb under a variety of conditions. The 
modules group together clusters of co-expressed protein-coding 
genes, as well as ncRNA transcripts predicted from RNA-Seq 
signals. Several modules are statistically enriched for sRNAs, es-
pecially those modules positively correlated with hypoxia. The 
abundance of antisense RNA in conditions of stress has been 
widely observed, and it is, therefore, not a surprise to find them in 
the hubs of these modules. However, it is noticeable that the com-
plementary ORF is usually excluded, which leads us to seriously 
consider antisense transcription as part of strategic regulation of 
protein production in response to environmental cues through 
mechanisms of divergent transcription, translational control or by 
regulating mRNA stability (Vargas-Blanco & Shell, 2020; Warman 
et al.,  2021). If these strategies actually differ among the mem-
bers of the MTBC, it may have implications for host specificity 
and virulence (Dinan et al., 2014). By the same logic, 3′ UTR tran-
scripts clustering in modules distinct from their upstream ORF im-
plies independent function from the ORF. sRNAs generated from 
3′ UTRs have been reported in other prokaryotes and evidence 
points to widespread mRNA processing that could release inde-
pendent transcripts at the 3′ end (Dar & Sorek, 2018; Desgranges 
et al., 2021; Updegrove et al., 2019; Wang et al., 2019). In com-
pact bacterial genomes, 3′ UTRs are also found to overlap other 
3′ UTRs in a converging transcription pattern, which may provide 
a mechanism for regulating the expression or stability of either 
transcript (Ju et al., 2019; Vargas-Blanco & Shell, 2020).

F I G U R E  9  Protein-coding genes involved in responses to hypoxia and adaptation to cholesterol cluster together in overlapping modules 
in different network approaches. (a) Comparison of protein-coding genes with MM > 0.7 in ‘cyan’ module with Bicluster 182 (Peterson 
et al., 2014), DevR iModulon (Yoo et al., 2022) and DevR regulon. (b) Comparison of cholesterol metabolism biclusters linked to steroid 
ring degradation (bc_0199, bc_0200, bc_337) (Peterson et al., 2014), Rv0681 iModulon (Yoo et al., 2022) and the protein-coding genes of 
‘royalblue’ module with MM > 0.8. Regulons were defined as in Yoo et al., 2022 (downloaded from https://github.com/Reosu/​modul​ome_mtb) 
and include genes with predicted binding.
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The modules discussed in depth in this paper represent a limited 
snapshot of this extensive co-expression network. Modules of inter-
est can be identified by correlations to experimental conditions, as-
sociated GO terms, functional categories, or gene group enrichment. 
The supplementary tables (Supporting Information Table  S2) have 
been organised into an easily accessible spreadsheet for researchers 
to query particular genes or modules of interest and find associated 
protein-coding genes or ncRNA. These spreadsheets provide infor-
mation about the module association, membership values, TSSs and 
for UTRs, the module membership of the adjacent ORFs for each 
predicted ncRNA. To facilitate further exploration of this exten-
sive data, we have made a simple R Shiny app available at https://
github.com/jenja​ne118/​mtb_wgcna. Modules can be explored for 
hub members and individual transcripts can be queried for expres-
sion profiles and adjacent non-coding RNA. We anticipate this to 
be a useful resource for discovering ncRNA candidates for further 
investigation, add context to the circumstances of expression of pre-
viously identified ncRNAs, identify associations of genes with un-
known functions and suggest roles for ‘moonlighting’ proteins that 
may be associated with unexpected gene groupings.

AUTHOR CONTRIBUTIONS
Jennifer Stiens: Data curation; formal analysis; investigation; 
methodology; software; visualization; writing – original draft; 
writing – review and editing. Yen Yi Tan: Data curation; formal 
analysis; investigation; methodology; software; writing – review 
and editing. Rosanna Joyce: Formal analysis; investigation; meth-
odology; software; writing – review and editing. Kristine Bourke 
Arnvig: Conceptualization; writing – review and editing. Sharon 
Louise Kendall: Conceptualization; formal analysis; funding ac-
quisition; supervision; writing – review and editing. Irene Nobeli: 
Conceptualization; data curation; formal analysis; funding acquisi-
tion; investigation; methodology; project administration; resources; 
software; supervision; visualization; writing – original draft; writing 
– review and editing.

FUNDING S TATEMENT
This work was supported by a Bloomsbury Colleges PhD student-
ship to JS.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no competing interests.

DATA AVAIL ABILIT Y S TATEMENT
The code and data to reproduce the analysis in this study are ar-
chived on Zenodo (https://www.zenodo.org), DOI: https://doi.
org/10.5281/zenodo.7709329. The original code and R data objects 
are also available on GitHub (https://www.github.com/jenja​ne118/​
mtb_wgcna/).

E THIC S S TATEMENT
None.

ORCID
Sharon L. Kendall   https://orcid.org/0000-0003-3277-3035 
Irene Nobeli   https://orcid.org/0000-0001-8616-170X 

R E FE R E N C E S
Aguilar-Ayala, D.A., Tilleman, L., Van Nieuwerburgh, F., Deforce, D., 

Palomino, J.C., Vandamme, P. et al. (2017a) The transcriptome of 
Mycobacterium tuberculosis in a lipid-rich dormancy model through 
RNAseq analysis. Scientific Reports, 7(1), 17665. Available from: 
https://doi.org/10.1038/s4159​8-017-17751​-x

Ami, V.K.G., Balasubramanian, R. & Hegde, S.R. (2020) Genome-wide 
identification of the context- dependent sRNA expression in 
Mycobacterium tuberculosis. BMC Genomics, 21(167), 1–12.

Arnvig, K. & Young, D. (2012) Non-coding RNA and its potential role in 
Mycobacterium tuberculosis pathogenesis. RNA Biology, 9(4), 427–
436. Available from: https://doi.org/10.4161/rna.20105

Arnvig, K.B., Comas, I., Thomson, N.R., Houghton, J., Boshoff, H.I., 
Croucher, N.J. et al. (2011) Sequence-based analysis uncovers 
an abundance of non-coding RNA in the total transcriptome of 
Mycobacterium tuberculosis. PLoS Pathogens, 7(11), e1002342. 
Available from: https://doi.org/10.1371/journ​al.ppat.1002342

Arnvig, K.B. & Young, D.B. (2009) Identification of small RNAs in 
Mycobacterium tuberculosis. Molecular Microbiology, 73(3), 397–408. 
Available from: https://doi.org/10.1111/j.1365-2958.2009.06777.x

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, 
J.M. et al. (2000) Gene ontology: tool for the unification of biol-
ogy. Nature Genetics, 25(1), 25–29. Available from: https://doi.
org/10.1038/75556

Becq, J., Gutierrez, M.C., Rosas-Magallanes, V., Rauzier, J., Gicquel, B., 
Neyrolles, O. et al. (2007) Contribution of horizontally acquired 
genomic islands to the evolution of the tubercle bacilli. Molecular 
Biology and Evolution, 24(8), 1861–1871. Available from: https://doi.
org/10.1093/molbe​v/msm111

Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: 
a practical and powerful approach to multiple testing. Journal of the 
Royal Statistical Society: Series B (Methodological), 57(1), 289–300. 
Available from: https://doi.org/10.1111/j.2517-6161.1995.tb020​31.x

Bhusal, R.P., Bashiri, G., Kwai, B.X.C., Sperry, J. & Leung, I.K.H. (2017) 
Targeting isocitrate lyase for the treatment of latent tuberculosis. 
Drug Discovery Today, 22(7), 1008–1016. Available from: https://
doi.org/10.1016/j.drudis.2017.04.012

Bidnenko, E. & Bidnenko, V. (2018) Transcription termination factor 
rho and microbial phenotypic heterogeneity. Current Genetics, 
64(3), 541–546. Available from: https://doi.org/10.1007/s0029​
4-017-0775-7

Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S., 
Mitchell, A. et al. (2020) The InterPro protein families and domains 
database: 20 years on. Nucleic Acids Research, 49(D1), D344–D354. 
Available from: https://doi.org/10.1093/nar/gkaa977

Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trim-
mer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. 
Available from: https://doi.org/10.1093/bioin​forma​tics/btu170

Canestrari, J.G., Lasek-Nesselquist, E., Upadhyay, A., Rofaeil, M., 
Champion, M.M., Wade, J.T. et al. (2020) Polycysteine-encoding 
leaderless short ORFs function as cysteine-responsive atten-
uators of operonic gene expression in mycobacteria. Molecular 
Microbiology, 114(1), 93–108. Available from: https://doi.
org/10.1111/mmi.14498

Carver, T., Harris, S.R., Berriman, M., Parkhill, J. & McQuillan, J.A. (2012) 
Artemis: an integrated platform for visualization and analysis of 
high-throughput sequence-based experimental data. Bioinformatics, 
28(4), 464–469. Available from: https://doi.org/10.1093/bioin​
forma​tics/btr703

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

https://github.com/jenjane118/mtb_wgcna
https://github.com/jenjane118/mtb_wgcna
https://www.zenodo.org
https://doi.org/10.5281/zenodo.7709329
https://doi.org/10.5281/zenodo.7709329
https://www.github.com/jenjane118/mtb_wgcna/
https://www.github.com/jenjane118/mtb_wgcna/
https://orcid.org/0000-0003-3277-3035
https://orcid.org/0000-0003-3277-3035
https://orcid.org/0000-0001-8616-170X
https://orcid.org/0000-0001-8616-170X
https://doi.org/10.1038/s41598-017-17751-x
https://doi.org/10.4161/rna.20105
https://doi.org/10.1371/journal.ppat.1002342
https://doi.org/10.1111/j.1365-2958.2009.06777.x
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://doi.org/10.1093/molbev/msm111
https://doi.org/10.1093/molbev/msm111
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.drudis.2017.04.012
https://doi.org/10.1016/j.drudis.2017.04.012
https://doi.org/10.1007/s00294-017-0775-7
https://doi.org/10.1007/s00294-017-0775-7
https://doi.org/10.1093/nar/gkaa977
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1111/mmi.14498
https://doi.org/10.1111/mmi.14498
https://doi.org/10.1093/bioinformatics/btr703
https://doi.org/10.1093/bioinformatics/btr703


398  |    STIENS et al.

Chao, Y., Papenfort, K., Reinhardt, R., Sharma, C.M. & Vogel, J. (2012) An 
atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic res-
ervoir of regulatory small RNAs. The EMBO Journal, 31(20), 4005–
4019. Available from: https://doi.org/10.1038/emboj.2012.229

Chen, J. & Xie, J. (2011) Role and regulation of bacterial LuxR-like regula-
tors. Journal of Cellular Biochemistry, 112(10), 2694–2702. Available 
from: https://doi.org/10.1002/jcb.23219

Chetal, K. & Janga, S.C. (2015) OperomeDB: a database of condition-
specific transcription units in prokaryotic genomes. BioMed 
Research International, 2015, 318217. Available from: https://doi.
org/10.1155/2015/318217

Cortes, T., Schubert, O.T., Rose, G., Arnvig, K.B., Comas, I., Aebersold, 
R. et al. (2013) Genome-wide mapping of transcriptional start sites 
defines an extensive leaderless transcriptome in Mycobacterium tu-
berculosis. Cell Reports, 5(4), 1121–1131. Available from: https://doi.
org/10.1016/j.celrep.2013.10.031

Dar, D., Shamir, M., Mellin, J.R., Koutero, M., Stern-Ginossar, N., Cossart, 
P. et al. (2016) Term-seq reveals abundant ribo-regulation of antibi-
otics resistance in bacteria. Science, 352(6282), aad9822. Available 
from: https://doi.org/10.1126/scien​ce.aad9822

Dar , D. & Sorek , R. ( 2018 ) Bacterial noncoding RNAs excised from 
within protein-coding transcripts. MBio , 9 ( 5 ), e01730-18. 
Available from: https://doi.org/10.1128/mBio.01730​-18

Del Portillo, P., García-Morales, L., Menéndez, M.C., Anzola, J.M., 
Rodríguez, J.G., Helguera-Repetto, A.C. et al. (2019) Hypoxia is not 
a Main stress when Mycobacterium tuberculosis is in a dormancy-like 
long-chain fatty acid environment. Frontiers in Cellular and Infection 
Microbiology, 8, 449.

Desgranges, E., Barrientos, L. & Caldelari, I. (2021) The 3′UTR-derived 
sRNA RsaG coordinates redox homeostasis and metabolism adap-
tation in response to glucose-6-phosphate uptake in Staphylococcus 
aureus. Molecular Microbiology., 117, 193–214. Available from: 
https://doi.org/10.1111/MMI.14845

D'Halluin, A., Polgar, P., Kipkorir, T., Patel, Z., Cortes, T., & Arnvig, K. 
B. (2022). Term-seq reveals an abundance of conditional, rho-
dependent termination in Mycobacterium tuberculosis. BioRxiv, 
2022.06.01.494293. https://doi.org/10.1101/2022.06.01.494293

Dinan, A.M., Tong, P., Lohan, A.J., Conlon, K.M., Miranda-CasoLuengo, 
A.A., Malone, K.M. et al. (2014) Relaxed selection drives a Noisy 
noncoding transcriptome in members of the Mycobacterium tuber-
culosis complex. MBio, 5(4), e01169-14. Available from: https://doi.
org/10.1128/mBio.01169​-14

Du, P., Sohaskey, C.D. & Shi, L. (2016) Transcriptional and physiological 
changes during Mycobacterium tuberculosis reactivation from non-
replicating persistence. Frontiers in Microbiology, 7(Aug). Available 
from: https://doi.org/10.3389/fmicb.2016.01346

Dutta, D. (2018) Advance in research on Mycobacterium tuberculosis 
FabG4 and its inhibitor. Frontiers in Microbiology, 9. Available from: 
https://doi.org/10.3389/fmicb.2018.01184

Ellis, M.J. & Haniford, D.B. (2016) Riboregulation of bacterial and ar-
chaeal transposition. WIREs RNA, 7(3), 382–398. Available from: 
https://doi.org/10.1002/wrna.1341

Eoh, H., Wang, Z., Layre, E., Rath, P., Morris, R., Branch Moody, D. et al. 
(2017) Metabolic anticipation in Mycobacterium tuberculosis. Nature 
Microbiology, 2(8), 17084. Available from: https://doi.org/10.1038/
nmicr​obiol.2017.84

Galperin, M.Y., Wolf, Y.I., Makarova, K.S., Vera Alvarez, R., Landsman, 
D. & Koonin, E.V. (2021) COG database update: focus on micro-
bial diversity, model organisms, and widespread pathogens. Nucleic 
Acids Research, 49(D1), D274–D281. Available from: https://doi.
org/10.1093/nar/gkaa1018

Gerrick, E.R., Barbier, T., Chase, M.R., Xu, R., François, J., Lin, V.H. et al. 
(2018) Small RNA profiling in Mycobacterium tuberculosis identi-
fies mrsi as necessary for an anticipatory iron sparing response. 
Proceedings of the National Academy of Sciences of the United States 

of America, 115(25), 6464–6469. Available from: https://doi.
org/10.1073/pnas.17180​03115

Girardin, R.C. & McDonough, K.A. (2020) Small RNA Mcr11 requires 
the transcription factor AbmR for stable expression and regulates 
genes involved in the central metabolism of Mycobacterium tuber-
culosis. Molecular Microbiology, 113(2), 504–520. Available from: 
https://doi.org/10.1111/mmi.14436

Gonzalo-Asensio, J., Malaga, W., Pawlik, A., Astarie-Dequeker, C., 
Passemar, C., Moreau, F. et al. (2014) Evolutionary history of tuber-
culosis shaped by conserved mutations in the PhoPR virulence reg-
ulator. Proceedings of the National Academy of Sciences of the United 
States of America, 111(31), 11491–11496. Available from: https://
doi.org/10.1073/pnas.14066​93111

Gonzalo-Asensio, J., Mostowy, S., Harders-Westerveen, J., Huygen, K., 
Hernández-Pando, R., Thole, J. et al. (2008) PhoP: a missing piece 
in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS 
One, 3(10), e3496. Available from: https://doi.org/10.1371/journ​
al.pone.0003496

Harold, L.K., Antoney, J., Ahmed, F.H., Hards, K., Carr, P.D., Rapson, T. et al. 
(2019) FAD-sequestering proteins protect mycobacteria against hy-
poxic and oxidative stress. Journal of Biological Chemistry, 294(8), 2903–
5814. Available from: https://doi.org/10.1074/jbc.RA118.006237

Houghton, J., Rodgers, A., Rose, G., D'Halluin, A., Kipkorir, T., Barker, 
D. et al. (2021) The Mycobacterium tuberculosis sRNA F6 mod-
ifies expression of essential chaperonins, GroEL2 and GroES. 
Microbiology Spectrum, 9(2), e01095-21. Available from: https://doi.
org/10.1128/Spect​rum.01095​-21

Huang, D.W., Sherman, B.T. & Lempicki, R.A. (2009a) Bioinformatics en-
richment tools: paths toward the comprehensive functional analy-
sis of large gene lists. Nucleic Acids Research, 37(1), 1–13. Available 
from: https://doi.org/10.1093/nar/gkn923

Huang, D.W., Sherman, B.T. & Lempicki, R.A. (2009b) Systematic and 
integrative analysis of large gene lists using DAVID bioinformatics 
resources. Nature Protocols, 4(1), 44–57. Available from: https://doi.
org/10.1038/nprot.2008.211

Ignatov, D.V., Salina, E.G., Fursov, M.V., Skvortsov, T.A., Azhikina, T.L. & 
Kaprelyants, A.S. (2015) Dormant non-culturable Mycobacterium tu-
berculosis retains stable low-abundant mRNA. BMC Genomics, 16(1), 
954. Available from: https://doi.org/10.1186/s1286​4-015-2197-6

Jiang, J., Lin, C., Zhang, J., Wang, Y., Shen, L., Yang, K. et al. (2020) 
Transcriptome changes of mycobacterium marinum in the pro-
cess of resuscitation from hypoxia-induced dormancy. Frontiers 
in Genetics, 10(February), 1–13. Available from: https://doi.
org/10.3389/fgene.2019.01359

Jiang, J., Sun, X., Wu, W., Li, L., Wu, H., Zhang, L. et al. (2016) Construction 
and application of a co-expression network in Mycobacterium tu-
berculosis. Scientific Reports, 6(March 2015), 1–18. Available from: 
https://doi.org/10.1038/srep2​8422

Jiao, X., Sherman, B.T., Huang, D.W., Stephens, R., Baseler, M.W., Lane, 
H.C. et al. (2012) DAVID-WS: a stateful web service to facilitate 
gene/protein list analysis. Bioinformatics, 28(13), 1805–1806. 
Available from: https://doi.org/10.1093/bioin​forma​tics/bts251

Ju, X., Li, D. & Liu, S. (2019) Full-length RNA profiling reveals perva-
sive bidirectional transcription terminators in bacteria. Nature 
Microbiology, 4(11), 1907–1918. Available from: https://doi.
org/10.1038/s4156​4-019-0500-z

Kanehisa, M., Sato, Y. & Kawashima, M. (2022) KEGG mapping tools for 
uncovering hidden features in biological data. Protein Science, 31(1), 
47–53. Available from: https://doi.org/10.1002/pro.4172

Kapopoulou, A., Lew, J.M. & Cole, S.T. (2011) The MycoBrowser portal: 
a comprehensive and manually annotated resource for mycobacte-
rial genomes. Tuberculosis, 91(1), 8–13. Available from: https://doi.
org/10.1016/j.tube.2010.09.006

Kendall, S.L., Burgess, P., Balhana, R., Withers, M., Ten Bokum, A., 
Lott, J.S. et al. (2010) Cholesterol utilization in mycobacteria is 

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

https://doi.org/10.1038/emboj.2012.229
https://doi.org/10.1002/jcb.23219
https://doi.org/10.1155/2015/318217
https://doi.org/10.1155/2015/318217
https://doi.org/10.1016/j.celrep.2013.10.031
https://doi.org/10.1016/j.celrep.2013.10.031
https://doi.org/10.1126/science.aad9822
https://doi.org/10.1128/mBio.01730-18
https://doi.org/10.1111/MMI.14845
https://doi.org/10.1101/2022.06.01.494293
https://doi.org/10.1128/mBio.01169-14
https://doi.org/10.1128/mBio.01169-14
https://doi.org/10.3389/fmicb.2016.01346
https://doi.org/10.3389/fmicb.2018.01184
https://doi.org/10.1002/wrna.1341
https://doi.org/10.1038/nmicrobiol.2017.84
https://doi.org/10.1038/nmicrobiol.2017.84
https://doi.org/10.1093/nar/gkaa1018
https://doi.org/10.1093/nar/gkaa1018
https://doi.org/10.1073/pnas.1718003115
https://doi.org/10.1073/pnas.1718003115
https://doi.org/10.1111/mmi.14436
https://doi.org/10.1073/pnas.1406693111
https://doi.org/10.1073/pnas.1406693111
https://doi.org/10.1371/journal.pone.0003496
https://doi.org/10.1371/journal.pone.0003496
https://doi.org/10.1074/jbc.RA118.006237
https://doi.org/10.1128/Spectrum.01095-21
https://doi.org/10.1128/Spectrum.01095-21
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1186/s12864-015-2197-6
https://doi.org/10.3389/fgene.2019.01359
https://doi.org/10.3389/fgene.2019.01359
https://doi.org/10.1038/srep28422
https://doi.org/10.1093/bioinformatics/bts251
https://doi.org/10.1038/s41564-019-0500-z
https://doi.org/10.1038/s41564-019-0500-z
https://doi.org/10.1002/pro.4172
https://doi.org/10.1016/j.tube.2010.09.006
https://doi.org/10.1016/j.tube.2010.09.006


    |  399STIENS et al.

controlled by two TetR-type transcriptional regulators: KstR and 
kstR2. Microbiology, 156(5), 1362–1371. Available from: https://doi.
org/10.1099/mic.0.03453​8-0

Kendall, S.L., Withers, M., Soffair, C.N., Moreland, N.J., Gurcha, S., 
Sidders, B. et al. (2007) A highly conserved transcriptional re-
pressor controls a large regulon involved in lipid degradation 
in mycobacterium smegmatis and Mycobacterium tuberculosis. 
Molecular Microbiology, 65(3), 684–699. Available from: https://doi.
org/10.1111/j.1365-2958.2007.05827.x

Kipkorir, T., Mashabela, G.T., de Wet, T.J., Koch, A., Dawes, S.S., Wiesner, 
L. et al. (2021) De novo cobalamin biosynthesis, transport, and as-
similation and cobalamin-mediated regulation of methionine biosyn-
thesis in mycobacterium smegmatis. Journal of Bacteriology, 203(7), 
e00620-20. Available from: https://doi.org/10.1128/JB.00620​-20

Lamichhane, G., Arnvig, K.B. & McDonough, K.A. (2013) Definition and 
annotation of (myco)bacterial non-coding RNA. Tuberculosis, 93(1), 
26–29. Available from: https://doi.org/10.1016/j.tube.2012.11.010

Langfelder , P. & Horvath , S. ( 2008 ) WGCNA: an R package for weighted 
correlation network analysis . BMC Bioinformatics 9, 559. Available 
from: https://doi.org/10.1186/1471-2105-9-559

Lejars, M., Kobayashi, A. & Hajnsdorf, E. (2019) Physiological roles of an-
tisense RNAs in prokaryotes. Biochimie, 164, 3–16. Available from: 
https://doi.org/10.1016/j.biochi.2019.04.015

Li, Heng. (2013). Aligning sequence reads, clone sequences and as-
sembly contigs with BWA-MEM. https://doi.org/10.48550/​
arXiv.1303.3997

Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. Genome 
Biology, 15(12), 1–21. Available from: https://doi.org/10.1186/
s1305​9-014-0550-8

Lu , L. , Wei , R. , Bhakta , S. , Waddell , S.J. & Boix , E. ( 2021 ) Weighted 
gene co-expression network analysis to identify key modules 
and hub genes associated with mycobacterial infection of human 
macrophages . Antibiotics, 10(2), 97. Available from: https://doi.
org/10.3390/antib​iotic​s1002​0097

Lunge, A., Gupta, R., Choudhary, E. & Agarwal, N. (2020) The unfoldase 
ClpC1 of Mycobacterium tuberculosis regulates the expression of a 
distinct subset of proteins having intrinsically disordered termini. 
Journal of Biological Chemistry, 295(28), 9455–9473. Available from: 
https://doi.org/10.1074/jbc.RA120.013456
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