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Abstract 

Background Despite successful control efforts in China over the past 60 years, zoonotic schistosomiasis caused by 
Schistosoma japonicum remains a threat with transmission ongoing and the risk of localised resurgences prompting 
calls for a novel integrated control strategy, with an anti-schistosome vaccine as a core element. Anti-schistosome 
vaccine development and immunisation attempts in non-human mammalian host species, intended to interrupt 
transmission, and utilising various antigen targets, have yielded mixed success, with some studies highlighting varia-
tion in schistosome antigen coding genes (ACGs) as possible confounders of vaccine efficacy. Thus, robust selection 
of target ACGs, including assessment of their genetic diversity and antigenic variability, is paramount. Tetraspanins 
(TSPs), a family of tegument-surface antigens in schistosomes, interact directly with the host’s immune system and are 
promising vaccine candidates. Here, for the first time to our knowledge, diversity in S. japonicum TSPs (SjTSPs) and the 
impact of diversifying selection and sequence variation on immunogenicity in these protiens were evaluated.

Methods SjTSP sequences, representing parasite populations from seven provinces across China, were gathered 
by baiting published short-read NGS data and were analysed using in silico methods to measure sequence variation 
and selection pressures and predict the impact of selection on variation in antigen protein structure, function and 
antigenic propensity.

Results Here, 27 SjTSPs were identified across three subfamilies, highlighting the diversity of TSPs in S. japonicum. 
Considerable variation was demonstrated for several SjTSPs between geographical regions/provinces, revealing that 
episodic, diversifying positive selection pressures promote amino acid variation/variability in the large extracellular 
loop (LEL) domain of certain SjTSPs. Accumulating polymorphisms in the LEL domain of SjTSP-2, -8 and -23 led to 
altered structural, functional and antibody binding characteristics, which are predicted to impact antibody recog-
nition and possibly blunt the host’s ability to respond to infection. Such changes, therefore, appear to represent a 
mechanism utilised by S. japonicum to evade the host’s immune system.

Conclusion Whilst the genetic and antigenic geographic variability observed amongst certain SjTSPs could present 
challenges to vaccine development, here we demonstrate conservation amongst SjTSP-1, -13 and -14, revealing 
their likely improved utility as efficacious vaccine candidates. Importantly, our data highlight that robust evaluation 
of vaccine target variability in natural parasite populations should be a prerequisite for anti-schistosome vaccine 
development.
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Background
Across Southeast Asia, zoonotic schistosomiasis, caused 
by Schistosoma japonicum, is responsible for infection 
of humans, as well as ~ 40 species of wild and domesti-
cated animals, where animal hosts play an important role 
in maintaining parasite transmission [1, 2]. The recent 
Healthy China 2030 strategic plan outlines a revised 
schistosomiasis elimination target of 2030, in line with 
the recent WHO NTD roadmap [3, 4]. However, despite 
well-concerted, multi-disciplinary control efforts over 
the last 60 years [5, 6], which have resulted in a reduction 
in human infections from > 11 million people to ~ 30,000, 
as well as a similar reduction in livestock infections [7, 8], 
the risk of resurgence remains ever present in China and 
other schistosome-endemic SE Asian countries and is 
expected to increase, in part due to persistent hotspots of 
infection, the perpetual presence of refugia, and anthro-
pogenic changes to the climate and environment [9–12].

The development of an effective anti-schistosome vac-
cine, which has recently seen renewed interest glob-
ally, would provide an essential tool in moving towards 
end-game elimination in China. Concerns of reduced 
praziquantel (PZQ) susceptibility would be mitigated 
by implementing a vaccine in current control strategies, 
complementing and reducing reliance on frequent PZQ 
mass drug administration (MDA) and thereby simultane-
ously supressing the risk of parasites evolving PZQ resist-
ance [13–15], thus serving to reduce the possibility of 
future resurgences [10, 16–18].

To date, more than 100 vaccine candidate antigens have 
been identified and tested against various schistosome 
species within animal models [17]. A protein family of 
particular interest, the transmembrane, tegument- and 
oesophageal-associated tetraspanins (TSPs), have been 
shown to elicit variable levels of immune response in ani-
mal models, including murine and bovine definitive hosts 
[19–22].

Of the known S. japonicum TSPs (SjTSPs), several have 
been shown to interact directly with host immune com-
ponents via their large extracellular loop (LEL) domains 
[23–26], with a number of TSPs shown to be crucial in 
tegument development, maturation and stability [27], 
and which are also involved in host immune evasion, 
transition to parasitism and survival in the definitive 
host [23, 24, 28–31]. Several TSPs have been suggested 
as anti-schistosome vaccine candidates, particularly 
SjTSP-2 and -23 [17, 23, 25, 29–32]. However, despite the 
immunological properties of SjTSPs supporting their use 

as vaccine targets, only partial protection and variable 
efficacy have been demonstrated in animal-based SjTSP 
immunisation studies [19, 20, 30].

The TSP-LEL domain is highly polymorphic, particu-
larly in the case of SjTSP-2, with such ‘hypervariability’ 
suggested to underly the variable vaccine efficacy [24, 26, 
30, 33, 34]. Indeed, the polymorphic nature and genetic 
diversity of TSP-2 and TSP-23, demonstrated within 
and between schistosome species, have been suggested 
to limit their utility as vaccine targets [19, 24, 25, 30, 32, 
35]. Schistosomes express multiple TSP variants through 
alternative splicing and allelic variation [24, 30, 34, 36], 
and hypervariability within the TSP-LEL domain is sug-
gested to reflect the selective influence of the definitive 
host, resulting in antigenic variation [33].

Elucidating how antigen diversity and evolution influ-
ence the antigenic propensity of SjTSP proteins remains 
necessary to properly evaluate their utility as vaccine 
targets [32–34]; however, these aspects of SjTSP biol-
ogy have not been explored. Here, by employing in sil-
ico approaches using TSPs retrieved from published S. 
japonicum genomic datasets, this study aimed to iden-
tify putative SjTSPs and determine their diversity and 
evolutionary history in S. japonicum. In particular, the 
geographic variability of SjTSP sequence from seven 
provinces across China was assessed, with the aim of 
identifying which members of the antigen family were 
most variable, localising particularly variable SjTSP 
regions and categorisng selection pressures driving the 
measured SjTSP geographical sequence variation. The 
results obtained should have significant theoretical and 
applied implications, particularly regarding the identifi-
cation of future anti-schistosome vaccine targets.

Methods
SjTSP sequence retrieval, characterisation 
and phylogenetic analysis
Owing to the paucity of available and accurately 
described tetraspanin sequence data from S. japonicum, 
the full SjTSP protein family remains poorly resolved. 
Thirty-three putative SjTSP mRNA sequences were 
retrieved from the S. japonicum genome assembly on 
WormBase ParaSite [37], and a further 29 were identified 
from literature sources (Table 1) [29, 32, 38]. Where cod-
ing sequences (cds) were absent from the literature and 
online databases, whole gene and protein sequences were 
queried in GeneWise [39] to retrieve the related cds.
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Putative TSP protein sequences were validated using 
TMHMM 2.0 to confirm their membrane association, 
SMART to predict domain architecture (presence of the 
two extracellular loop domains [26] and PROTTER to 
assess protein membrane topology [40–42]. From these 
structurally validated SjTSPs, seven were selected for 
detailed analysis (Table 1) based upon an analysis of pub-
lished information pertaining to each SjTSPs structure, 
function, immunogenicity and vaccine candidacy [20, 25, 
26, 32, 38].

Structurally validated SjTSP protein sequences were 
aligned using the MEGA7-integrated MUSCLE tool [43, 
44], and phylogenetic reconstruction was done using 
the distance-based neighbour joining (NJ) method [45] 
to assess the relationships between members of the S. 
japonicum tetraspanin family. Nodal support was deter-
mined using 1000 bootstrap replicates. Amino acid posi-
tions containing gaps and missing data were omitted 
from analysis.

Genetic variation of SjTSPs and identification of selection 
pressures
The seven SjTSP reference sequences (Table 1) were used 
to bait short-read NGS data, sequenced from ten pairs 
of adult worms from each of the seven sampled prov-
inces across China (Yunnan, Sichuan, Hunan, Hubei, 
Jiangxi, Anhui and Zhejiang) (Additional File 1: Fig. S1) 
by Young et al. [34]. Short-read NGS data were reported 
by Young et al. [34] to have achieved up to 50-fold cov-
erage of the S. japonicum reference genome for each of 
the seven sampled parasite populations, considered to be 
sufficient for draft genome assembly, and the identifica-
tion of putative protein coding genes for population and 
phylogenetic analysis. Using a similar approach as seen 
in [46, 47], sequence read archive (SRA)-BLAST was 
employed to retrieve the complete cds for each provincial 
SjTSP variant [48]. SjTSP SRA-collected sequences were 

aligned against SjTSP reference sequence and assem-
bled using the Contig Assembly Program 3 (CAP3) fea-
ture in Bioedit [49, 50]. Finally, using MUSCLE, multiple 
sequence alignments were constructed representing par-
asite isolates from each of the Chinese provinces for each 
SjTSP.

Phylogeographic relationships, also analysed using 
MEGA7, were investigated using provincial SjTSP cds 
alignments, inferred using the NJ method and 500 boot-
strap replicates. Schistosoma mansoni and Schistosoma 
haematobium TSP orthologues were used to root each 
phylogeny. Orthologous Sm- and ShTSPs were gathered 
through a BLASTn similarity search [51] of each SjTSP 
against the NCBI nucleotide collection, filtering for hits 
against each Schistosoma species.

Measures of genetic diversity were calculated using 
DNASP v6.12 [52] to gain insight into the geographic 
variation of SjTSPs between distinct S. japonicum popu-
lations across China, such as the number of polymorphic 
sites, number of haplotypes (h), haplotype diversity (Hd) 
and nucleotide diversity (π).

To detect the presence and extent of selection acting on 
the SjTSPs, non-synonymous (dN) and synonymous (dS) 
substitutions, averaged across all codons in the align-
ment (ω) for the whole cds and LEL domain encoding 
regions, were determined using MEGA7. Conventional 
thresholds for inferring the occurrence and extent of 
selection were used (positive selection, ω > 1; purifying 
selection, ω < 1; neutrality, ω = 1). The effect of selection 
on protein-coding genes is often difficult to identify, as 
traditional models, such as ω, predict selection across all 
sites in an alignment and thus lack statistical power, as 
selection may only occur at a small number of sites [53, 
54]. To define individual nucleotide sites under selection, 
and thus increase the resolution of the ω analysis, the 
Mixed Effects Model of Evolution (MEME) [55] and Fast, 
Unconstrained Bayesian AppRoximation (FUBAR) [54] 
analyses were performed via Datamonkey [56]. MEME 
applies a mixed-effects maximum-likelihood approach 
to test for episodic and diversifying selection; P-value 
thresholds were set to 0.5. FUBAR employs a Bayesian 
approach to infer positive or purifying selection at each 
site across the SjTSP alignment. As default, posterior 
probability value > 0.9 strongly indicates the presence of 
positive or purifying selection at a site.

Determining the effects of sequence variation on protein 
structure and function
Using BioEdit, SjTSP sequences from each of the seven 
provinces were translated into proteins to determine 
the impact of accumulating polymorphisms on each 
SjTSP amino acid sequence. Amino acid changes and 
B-cell antibody binding sites (epitopes), predicted using 

Table 1 Tetraspanin sequence sources and related domain 
information

SEL small extracellular loop, LEL large extracellular loop

Tetraspanin Accession number Amino acid residue 
positions

Source

Total SEL LEL

TSP-1 CAX70118.1 247 36–49 107–202 [85]

TSP-2 AEG74374.1 215 35–53 106–183 [30]

TSP-8 AAW24708.1 224 36–54 107–189 [86]

TSP-13 CAX69650.1 233 35–43 93–194 [85]

TSP-14 CAX69587.1 270 32–72 125–235 [85]

TSP-23 CAX72085.1 218 36–49 108–183 [85]

TSP-25 AY814252.1 287 101–115 166–252 [86]
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BepiPred-2.0 [57], were mapped onto SjTSP protein sec-
ondary structures and visualised using PROTTER.

To generate 3D protein models of each SjTSP, Protein 
Data Bank (PDB) models were generated from reference 
sequences using I-TASSER [58]. Confidence scores (c 
scores) estimated the quality of the models (> −5 = high 
confidence). Subsequently, PyMOL [59] was used to ren-
der 3D structures of the I-TASSER-produced SjTSP ref-
erence PDB files, enabling comprehensive visualisation of 
key domains, antibody binding sites and sequence varia-
tion in relation to protein tertiary structure.

Structural and conformational variation between 
provincial SjTSPs was assessed by comparing protein 
structures within DALI [60]. DALI z scores that define 
structural homology between provincial SjTSP 3D pro-
tein models were then used to evaluate the evolutionary 
divergence and clustering between the proteins using 
principal component analyses (PCAs).

To determine whether amino acid substitutions 
impacted the function of each SjTSP protein, SjTSP ref-
erence sequences and site location information of amino 
acid substitutions were uploaded into PROVEAN [61], 
generating a PROVEAN score. A score < −2.5 was used 
to predict whether an amino acid substitution alters 
SjTSP function at that individual site. TreeSAAP v3.2 
was then used to further investigate selection and deter-
mine whether amino acid changes significantly altered 
the physicochemical properties of each SjTSP [62], pro-
ducing z scores to establish the significance of amino 
acid replacement, type of deviation from neutrality and 
ranking the magnitude of changes in 31 physiochemi-
cal amino acid properties [63, 64]. Eight magnitude 
categories were analysed, with higher categories (5–8) 
denoting the most radical changes in protein bio-
chemistry. Significantly positive or negative z scores 
(> ± 1.645 = P < 0.05) indicate the influence of positive or 
purifying selection, respectively [64]. Significant and rad-
ical changes were considered evidence of positive selec-
tion resulting in adaptation (magnitude categories 5–8, z 
scores > 3.09 = P < 0.001).

Evaluating the impact of selection and provincial SjTSP 
variation on antigenicity and antibody binding affinity
SjTSP protein sequences were compared between prov-
inces to determine the association between sequence 
diversity and antigenicity, using the Kolaskar and Ton-
gaonkar (KT) method in the IEDB Antibody Epitope 
prediction tool [65]. The KT method is one of the 
most accurate, robust and widely used predictors of 
antigenicity of proteins. It applies an accurate semi-
empirical approach by utilising the physiochemical 
properties of amino acid residues and relative frequency 
of experimentally determined epitopes to predict 

antigenic determinants at each site directly from a pro-
tein sequence [66].

To elucidate effects of amino acid substitutions on 
antibody binding affinity in each SjTSP, mCSM-Ab was 
employed [67]. Utilising SjTSP 3D protein models and 
amino acid substitutions, mCSM-Ab employs a graph-
based machine-learning approach to infer changes in 
structural signatures from each residue in the SjTSP 
model that resulted from amino acid variation. Predic-
tions of the difference in Gibbs free energy (ΔΔG in Kcal/
mol) between reference SjTSP 3D protein models and 
provincial SjTSPs with amino acid substitutions were 
established to accurately assess the effects of mutations 
on the propensity for antibody binding.

Results
Phylogenetic relationship of TSP proteins in Schistosoma 
japonicum
From 62 sequences annotated as SjTSPs, 27 were struc-
turally validated as TSPs and were thus included for phy-
logenetic analysis. Phylogenetic reconstruction revealed 
that the TSP family in S. japonicum is highly divergent, 
with SjTSPs forming three monophyletic clades (Fig. 1). 
The clades resolved here correspond to the CD, CD63 
and Uroplakin groupings, as described in other organ-
isms, and in S. japonicum [29]. Deeper ancestral nodes, 
however, had low bootstrap support, providing uncer-
tainty in the deeper tree topology. Only seven nodes 
demonstrated bootstrap support values > 50 after 1000 
iterations. Clustering of SjTSP proteins in the CD sub-
family was best supported, with four of the seven well-
supported nodes evident in this clade. The short branch 
lengths and strong bootstrap support demonstrated in 
Fig. 1 for SjTSP-13 and TSP-6, and SjTSP-22 and TSP-4, 
suggest these SjTSPs are the same proteins.

Genetic differentiation and diversity of tetraspanin 
proteins between Schistosoma japonicum populations
The seven SjTSPs selected for phylogeographic analysis 
and assessment of genetic and antigen geographic varia-
tion were primarily chosen based on their recognition as 
potentially protective antigens and therefore as promis-
ing vaccine targets.

Within all phylogeographic analyses, deeper ancestral 
nodes were generally well supported by bootstrap val-
ues (Fig.  2), supporting the resolved branching. Recon-
structed phylogeographic relationships mostly divide 
SjTSP sequences into two distinct clades, other than for 
SjTSP-13; however, there was no consistent pattern based 
upon geographical distance between provinces (Fig. 2).

Nucleotide diversity (π) within S. japonicum popula-
tions was lowest for SjTSP-1, 13 and -14 (Table 2), and no 
allelic variants were found in the SRA data. In contrast, 
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SjTSP-2, -25 and -8 were the most genetically diverse 
across the seven provinces. The varied π is also reflected 
in the haplotype diversity (Hd) for the seven STSPs, 
which ranged between 0.29 and 1. SjTSP-2 and -8 both 
displayed a Hd of 1, indicating each provincial sequence 
is a unique haplotype variant. SjTSP-13 demonstrated 
the lowest Hd compared to the other SjTSPs, with only 
two haplotypes shared across all seven analysed prov-
inces (Table 2). Despite demonstrating one of the lowest 
π between provinces, SjTSP-1 had a Hd of 0.95, with six 
unique haplotypes that differed in only a few amino acids 
(Table 2). Between four (SjTSP-13) and 67 (SjTSP-2) pol-
ymorphic nucleotide sites were discovered across each 
SjTSP population. As such, SjTSP-13, -1 and -14 were 
shown to be relatively invariable between the seven prov-
inces compared to the other SjTSPs (Table 2).

Signatures of selection in SjTSPs
Substantial sequence variation was demonstrated 
within several SjTSPs from different provinces (Table 2); 

therefore, the impact of selection pressures was inves-
tigated for each SjTSP using ω. Mean dS and dN poly-
morphisms across the whole coding sequence (cds) were 
greatest for SjTSP-2, at 0.228 and 0.102, respectively 
(Fig. 3A), and were consistent with the far greater num-
ber of polymorphic sites detected in SjTSP-2 than the 
other SjTSPs (Table 2). SjTSP-25 has the second greatest 
dN and dS, both across the whole cds and LEL (Fig. 3), 
reflecting the number of detected polymorphic sites 
between provinces (Table 2). When assessing the whole 
cds, dS across SjTSP-1 and 2 is substantially higher than 
dN (Fig. 3A). In contrast, all other SjTSPs had higher dN 
than dS across each of their coding sequences. SjTSP-8, 
in particular, had > twofold higher dN compared to dS 
across the whole cds. When considering only the region 
encoding the LEL domain, SjTSP-2 also displayed the 
greatest dN and dS, where dN was more than twofold 
greater than dS (Fig.  3B), and relative to the remain-
ing SjTSPs, dN and dS values were comparatively low. 
Overall, SjTSP-1, -2, -8 and -25 revealed an increase in 

Fig. 1 Phylogenetic analysis of 27 protein sequences from the tetraspanin (TSP) protein family in Schistosoma japonicum. Evolutionary history was 
inferred using the neighbour-joining method, with 1000 bootstrap replicates, using MEGA7. Bootstrap values with > 50% support are displayed at 
each node. Three major SjTSP subfamily clades are highlighted in grey; highlighted sequences (red) were utilised for further analyses
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Fig. 2 Phylogeographic analyses of provincial Schistosoma japonicum protein isolates (from Yunnan, Sichuan, Jiangxi, Zhejiang, Hunan, Hubei 
and Anhui) from seven TSP proteins: A SjTSP-2, B SjTSP-8, C SjTSP-23, D SjTSP-1, E SjTSP-13, F SjTSP-14, G SjTSP-25. Phylogenetic relationships were 
determined using the neighbour-joining method, with 500 bootstrap replicates, using MEGA7. Only bootstrap values with > 50% support are 
displayed at each node
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dN, to varying degrees, when solely analysing the LEL 
cds (Fig.  3B), indicating the majority of nucleotide base 
changes that result in changes to the protein are accumu-
lating in this important region of the gene.

Comparing the type and extent of selection for each 
SjTSP, using the ω averaged across all codons, analysing 
the LEL only or across the whole cds, considerable vari-
ation in ω was identified, both within and between SjT-
SPs (Table 3). The ω analysis indicates positive selection 
is acting on the LEL of SjTSP-2 and -8. Conversely, aver-
age ω values across the whole cds of SjTSP-2 revealed the 
presence of purifying selection, suggesting that positive 
selective pressures are disproportionately acting on the 
LEL domain. In contrast, SjTSP-25 showed signatures 
of positive selection across the whole cds, and despite 

increased dN and dS across the LEL, purifying selection 
was detected. Interestingly, SjTSP-8 displayed positive 
selection when considering both the whole cds and that 
of the LEL, although ω for the whole cds was ~ 2.3-fold 
greater than that of the LEL, suggesting that selection 
pressures have had a greater impact on regions outside 
the LEL domain in SjTSP-8.

MEME and FUBAR were utilised to determine spe-
cific sites where selection may be acting (Additional 
File 2: Table  S1). For SjTSP-2, MEME detected 21 sites 
under positive selection, 17 of which were within the 
LEL. FUBAR detected six sites under positive selec-
tion in SjTSP-2 (four in the LEL) and 13 under purifying 

Table 2 Genetic diversity measurements for seven Schistosoma 
japonicum tetraspanin (TSP) metapopulations

Tetraspanin Polymorphic 
sites

Nucleotide 
diversity (π)

π S.D Number of 
haplotypes

Haplotype 
diversity 
(Hd)

SjTSP-1 5 0.0027 0.00056 6 0.95

SjTSP-2 67 0.0425 0.00936 7 1.0

SjTSP-8 19 0.0099 0.00212 7 1.0

SjTSP-13 4 0.0016 0.00112 2 0.29

SjTSP-14 5 0.0034 0.00057 4 0.81

SjTSP-23 8 0.0044 0.00096 5 0.86

SjTSP-25 27 0.0137 0.00226 6 0.95

Fig. 3 Signatures of selection acting upon seven tetraspanin (TSP) genes in Schistosoma japonicum. A The mean distribution of non-synonymous 
(dN) and synonymous (dS) mutations per TSP, averaged among all codons across the whole gene, or B among all codons within the region 
encoding the large extracellular loop (LEL) domain only. Mutations were estimated across all codons using DNASP and were plotted using PAST [82]

Table 3 Signatures of selection, measured as mean dN/dS (ω) 
across all codons of the whole coding sequence and the region 
encoding the large extracellular loop (LEL) domain, within 
Schistosoma japonicum tetraspanins

Tetraspanin Whole coding 
sequence

Region encoding large 
extracellular loop (LEL) 
domain

SjTSP-1 0.247 0

SjTSP-2 0.447 1.186

SjTSP-8 3.455 1.472

SjTSP-13 1.25 0

SjTSP-14 0.009 0.192

SjTSP-23 0.015 0.012

SjTSP-25 1.621 0.818
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selection (five with in the LEL). MEME and FUBAR 
both predicted positive selection at four sites (124, 
128, 143 and 158), all of which reside within the LEL of 
SjTSP-2. Analysis of SjTSP-8 revealed seven sites under 
positive selection, three of which were within the LEL, 
whereas FUBAR predicted three sites under positive 
and one under purifying selection. Agreement was seen 
for three sites (84, 130 and 155), two of which are in the 
LEL. For SjTSP-23, six (MEME) and one site(s) (FUBAR) 
were considered under positive selection, with nucleo-
tide site 169, contained within the LEL, called by both 
approaches. FUBAR failed to detect any purifying selec-
tion in SjTSP-23.

In silico analysis of SjTSP protein structure
All analysed SjTSP proteins contained short cytoplas-
mic tails at the C- and N-termini, a small extracellular 
loop (SEL) domain, a LEL domain, four transmembrane 

helices and (with the exception of SjTSP-25) the con-
served -CCG- (-Cys-Cys-Gly-) motif characteristic of the 
antigen family (Fig. 4). All seven 3D SjTSP protein mod-
els had c scores ≥ –2.13 (SjTSP-25), providing confidence 
in the I-TASSER-constructed SjTSP protein models. SjT-
SPs ranged from between 215 and 287 amino acids in 
length, with the SEL domains between 13 (SjTSP-1 and 
SjTSP-23) and 32 (SjTSP-14) and LEL domains between 
77 (SjTSP-2) and 110 (SjTSP-14) amino acids (Table  1). 
According to BepiPred, several predicted B-cell epitopes 
were < 20 amino acids and thus of inadequate length to 
bind antibodies. All viable B-cell epitopes were predicted 
to exist in the extracellular loop domains (Fig. 4).

Polymorphisms in the provincial SjTSPs translated 
to three amino acid substitutions in SjTSP-1, 34 in 
SjTSP-2, 17 in SjTSP-8, two in SjTSP-13, four in SjTSP-
14, six in SjTSP-23 and 21 in SjTSP-25. Due to lim-
ited nucleotide diversity (Table  2), and thus minimal 

Fig. 4 Primary (A), secondary (B) and tertiary structures (C) of Schistosoma japonicum tetraspanins (TSPs), SjTSP-2, SjTSP-8, SjTSP-23 and SjTSP-25. In 
A, B and C blue identifies the SEL domain and red the large extracellular loop (LEL) domain. In B and C green regions show the predicted epitopes 
and cyan the identified amino acid substitutions. Primary structure was visualised using BioEdit, secondary structure was predicted using PROTTER, 
and PyMOL molecular visualisation software was used to render the SjTSP tertiary structures
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variation in their respective amino acid sequences, 
SjTSP-1, -13 and -14 were omitted from further anal-
ysis. Considering the variability of SjTSP 3D protein 
structures across the seven provinces, the structural 
similarity PCA revealed limited clustering, indicating 

that across China, SjTSP-2, -8 and -23 variants gener-
ally exhibit limited structural conservation. SjTSP-23 
sequences from Hunan, Jiangxi and Yunnan as well as 
SjTSP-8 sequences from Anhui and Zhejiang did, how-
ever, demonstrate some structural similarities (Fig.  5). 
SjTSP-2 provincial sequences revealed a distinct lack 

Fig. 5 Principal component analyses of structural similarity for Schistosoma japonicum tetraspanin (TSP) proteins between provinces for SjTSP-2 (A), 
SjTSP-8 (B), SjTSP-23 (C) and SjTSP-25 (D). Structural similarity was inferred from z scores produced by the DALI protein comparison server and then 
plotted using the Tidyverse package [83] in RStudio [84]
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of clustering, outlining the extent of the structural 
variation across parasite populations from the seven 
provinces.

Impact of selection on SjTSP structure and function
Predicting the functional effects of amino acid substitu-
tions on the protein-coding regions of the three-variable 
SjTSPs using PROVEAN revealed that SjTSP-2 and -8 
had three function-altering mutations, whereas SjTSP-
23 had one (Additional File 3: Fig. S2). Sites with altered 
functionality in SjTSP-2 were spread across the entire 
protein, at positions 24, 144 and 169, with the latter two 
sites residing in the LEL domain as well as the largest 
epitope in SjTSP-2 (Fig.  4). Similarly, all altered sites in 
SjTSP-8 (143, 145 & 147) resided within the LEL domain, 
although are outside predicted epitopes (Fig. 4). In con-
trast, a single function-altering mutation at site 209 
within transmembrane domain 4 (TM4) was predicted 
for SjTSP-23. Further investigation of genetic divergence 
between SjTSPs, using TreeSAAP, enabled a compari-
son of amino acid substitutions between each provincial 
SjTSP relative to those evolving neutrally. Amino acid 
substitutions in SjTSP-2, -8 and -23 were predicted to 

alter a total of 22 physiochemical properties, spanning 
conformational, chemical, energetic and physical charac-
teristics of amino acids (Table 4). Z scores determined by 
TreeSAAP evaluated the significance of the amino acid 
replacements, establishing the type of selection pres-
sure acting on each SjTSP. All 22 property changes were 
significant (Table  4). Five z scores reached the highest 
threshold (> 3.09 = P > 0.001); therefore, those property 
changes were considered useful for inferring those prop-
erty changes will result from adaptive evolution.

Isoelectric point, root-mean-square (RMS) fluctuation 
displacement, chromatographic index and partial spe-
cific volume physicochemical properties were predicted 
to most affect the amino acid biochemistry of SjTSP-2 
(Table  4). Based on the TreeSAAP z for SjTSP-2, three 
and four properties were determined to be influenced by 
positive and purifying selection, respectively. Seven of the 
nine altered physicochemical properties in SjTSP-8 were 
considered significant (P < 0.05) and radically altered; of 
these, refractive index and composition were highly sig-
nificant and under the influence of positive selection and 
were therefore considered evidence of adaptive molecu-
lar evolution [62]. For SjTSP-23, six of the seven altered 

Table 4 Significant TreeSAAP z scores denoting amino acid physicochemical property alterations across Schistosoma japonicum 
tetraspanin proteins; SjTSP-2, SjTSP-8 and SjTSP-23

Magnitude categories denoting ‘radical’ or ‘substantial’ property changes (5–8) are shown; *P < 0.05, **P < 0.01, ***P < 0.001

Tetraspanin (TSP) Amino acid physicochemical properties Magnitude category (z scores)

5 6 7 8

SjTSP-2 Isoelectric point 2.219 * 1.92 *

Mean RMS fluctuation displacement −2.18 *

Partial specific volume 2.041 *

Chromatographic index −1.911 *

Hydropathy −1.679 *

Composition −1.739 *

SjTSP-8 Power to be at the N-terminal 2.385 **

Refractive index 7.047 ***

Composition 7.677 ***

Equilibrium constant (ionisation of COOH) 2.349 **

Mean RMS fluctuation displacement 2.301 *

Average number of surrounding residues 2.228 *

Hydropathy 2.210 *

Compressibility 5.025 ***

Bulkiness 3.139 ***

Power to be at the middle of α-helix 2.036 *

SjTSP-23 Polar requirement 3.238 ***

Refractive index 2.575 **

Coil tendencies 1.978 *

Composition 2.640 **

Compressibility 1.674 * 2.407 **

Total non-bonded energy 1.862 *
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amino acid properties were predicted to be significant 
and radically altered, although only polar requirement 
was deemed to be under positive adaptive selection.

These changes in SjTSP physicochemical proper-
ties illustrate the phenotypic impact non-synonymous 
mutations induce in TSPs from S. japonicum popula-
tions across China. As established using PROVEAN, 
most function-altering amino acid changes accumulated 
within the LEL domain of each variable SjTSP; therefore, 
the significantly altered physicochemical properties are 
assumed to also occur in the LEL domain.

Association of SjTSP genetic variability, antigenicity 
and antibody binding affinity
Antigenicity profiles confirmed the substantial antigenic 
propensity of all seven analysed SjTSPs (Fig.  6A/B/C 
and Additional File 4: Fig. S3). Interestingly, the exposed 
LEL domain of these SjTSPs contained distinctly non-
antigenic regions (antigenicity scores < 1), particularly in 
predicted B-cell epitopes. Considerable variation in the 
antigenicity profiles of provincial SjTSP-2, -8 and -23 was 
demonstrated. The terminal epitope in SjTSP-2 displayed 
the most variation in antigenicity between all provincial 
sequences, whereas the most profound change in anti-
genicity was demonstrated at residues 141–146 in the 
LEL domain of SjTSP-8 from Yunnan. In contrast, SjTSP-
1, -13, -14 and -25 showed no variation in antigenicity 
throughout the entire protein (Additional File 4: Fig. S3).

When considering the three SjTSPs displaying vari-
able antigenicity between the provinces, the greatest 
antigenic fluctuations were predicted within the LEL 
domain, although certain transmembrane helical regions 
(e.g. 186-209aa in SjTSP-2) also exhibited variation. Of 
particular interest is a peak in antigenicity within an area 
of the LEL domain flanked by predicted B-cell epitopes 
(140-150aa), which also appears to be a site of substantial 
antigenic variation between provinces, in SjTSP-2 and -8.

The impact of selection, and resultant amino acid sub-
stitutions, is further exemplified through the variability 
in antibody binding affinity within SjTSP-2, -8 and -23. 
The predicted antibody binding affinity for each SjTSP is 
most variable at sites within the LEL domain and is rela-
tively invariable outside the LEL domain, with ΔΔG close 
to zero (Fig.  6D/E/F). The highest frequency of change 
occurred across the LEL domain of SjTSP-2, with 10 
decreases and 13 increases in affinity (Fig. 6D). A region 
of SjTSP-2 s LEL domain between residues 141–168 was 
especially variable, comprising 15 of the 23 predicted 
antibody binding affinity changes. The largest change in 
affinity within the LEL domain of SjTSP-2 was a decrease 
at site 163 (ΔΔG = -0.441), although the greatest change 
in binding affinity across the three variable SjTSPs was 
in the LEL domain of SjTSP-8, which experienced a large 

decrease in affinity at site 143 (ΔΔG = -0.753) and an 
increase in affinity at site 147 (ΔΔG = 0.665). The great-
est alteration in SjTSP-23 binding affinity also occurred 
in the LEL domain, with a sharp increase at site 123 
(ΔΔG = 0.507). Also worth noting is the second largest 
increase in binding affinity, arising in TM4 at site 209 
(ΔΔG = 0.261).

Discussion
Schistosomes have evolved multiple strategies to evade 
the host immune system, enabling them to survive in the 
hostile and complex immunological environment of the 
host’s vasculature for many years [24]. Surface-exposed 
proteins, such as tegumental TSPs, are likely fundamen-
tal to this strategy [31]. Our findings suggest that schis-
tosome TSPs present at the host-parasite interface are 
attractive targets for a host immune response and that 
selection pressures drive polymorphisms in the LEL 
domain of SjTSPs that impose structural, functional and 
antibody binding consequences. As such, this diversi-
fication acts to reduce the impact of the host’s immune 
response by limiting antibody recognition, which may 
reduce their suitability as vaccine targets.

Phylogenetic assessment revealed S. japonicum TSPs to 
be highly divergent, with 27 unique members identified 
across three major protein subfamilies (CD, CD63 and 
Uroplakin). The subfamilies resolved here broadly agree 
with those presented by Wu et  al. [32] and Jiang et  al. 
[25], with only minor discrepancies, such as TSP#6 falling 
into the Uroplakin subfamily rather than the CD63 family 
[29]. Wu et al. [32] reported that TSPs-1, -16 and -20 fell 
within the CD9-like group [68], as also found here.

The phylogeographic relationships of SjTSPs-2, -8, -23, 
and -25 revealed considerable genetic diversity between 
provincial localities, indicating that between provinces 
these SjTSPs are evolving independently. This is sup-
ported by the ω, MEME and FUBAR analyses, which 
showed that gene regions encoding the extracellular 
loops of SjTSP-2, -8 and -23 are particularly influenced 
by evolutionary selective pressures, likely resulting from 
exposure of the domains to the host’s immune system. 
It appears that positive, diversifying selection, acting on 
specific sites within the LEL domain, promotes variation 
between TSP proteins from S. japonicum isolates from 
different Chinese provinces. Furthermore, the phylo-
geographic grouping of provincial SjTSP sequences cou-
pled with similarities in 3D protein structure suggests a 
link between genetic and structural variation, particu-
larly in SjTSP-8 from Anhui and Zhejiang. Proteins are 
often functionally constrained, limiting amino acid sub-
stitutions and structural variation to maintain function, 
although clustering of SjTSP-23 from Hunan, Yunnan 
and Jiangxi, despite a lack of structural similarity from 
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Zhejiang and other provinces, shows that functional con-
straints and sequence similarity do not eliminate amino 
acid substitutions from driving structural changes in 
SjTSPs.

Prolonged selection on the LEL domain has led to 
formation of a hypervariable region [24, 33], whereby 

selection appears to favour amino acid changes at cer-
tain antibody binding domain codons, as seen between 
residues 140–147 in the LEL domains of SjTSP-2 and 
-8. Host-derived selection pressure would promote such 
hypervariability, thus acting to limit recognition by host 
antibodies and providing S. japonicum with ‘escape’ 

Fig. 6 Predicted antigenicity profiles determined for tetraspanins (TSPs) of Schistosoma japonicum from Chinese provinces; SjTSP-2 (A), SjTSP-8 (B) 
and SjTSP-23 (C) and predicted ΔΔG (change in Gibbs free energy) across tetraspanin protein sequences for SjTSP-2 (D), SjTSP-8 (E) and SjTSP-23 (F). 
SjTSP proteins are considered antigenic where the antigenicity score is > 1 (solid black line). The blue area marks the small extracellular loop domain 
(SEL) and the red area the large extracellular loop domains (LEL). The grey area denotes BepiPred predicted B-cell epitopes. A negative ΔΔG value 
corresponded to an amino acid change predicted to reduce affinity, while a positive value was predicted to increase binding affinity. Antigenicity 
scores were plotted using the Tidyverse package [83] in RStudio [84]
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mutations to facilitate immune evasion [24–26, 33]. This 
current study revealed distinct variation in SjTSP-LEL 
antigenicity and antibody binding affinity in SjTSPs-2, 
-8 and -23 between parasites from different provinces. 
Antibody binding affinity was predicted to be low in 
the hypervariable region (140–147) in SjTSP-2-LEL and 
SjTSP-8-LEL, but was greater thereafter, highlighting 
the somewhat indiscriminate effect of non-synonymous 
mutations and resulting amino acid changes on SjTSP 
immunogenicity. Importantly, the variation identified 
here may indeed underestimate the total variation in TSP 
ACGs in S. japonicum populations across China, as stud-
ies have shown that, at least for TSP2, multiple allelic var-
iants can occur at a single location [24, 30]. Nonetheless, 
we demonstrate substantial variation between geographi-
cal isolates and the evolutionary impact the host could 
have on the structure and antigenic variability of TSPs 
from geographically distinct parasite populations.

SjTSP proteins exhibit notable antigenic propensity, 
with several large peaks in antigenicity predicted across 
the seven SjTSPs, as previously reported for SmTSP-
23 [33]. Findings here support both extracellular loop 
domains of SjTSPs as highly antigenic, with the LEL con-
taining the highest density of antibody binding sites, con-
firming the LEL domain of SjTSPs as an attractive target 
for host immune effector molecules, such as IgG anti-
bodies and B lymphocytes [23, 26, 30]. The LEL domains 
of variable SjTSPs (TSPs-2, -8 and -23) displayed the 
greatest fluctuations in antigenicity over the whole pro-
tein, supporting the suggestion by Sealey et al. [33] of an 
association between amino acid variation and antigenic 
variation in TSP-23, which also extends to SjTSP-2 and 
-8. Conversely, limited geographical antigenic variability 
of SjTSP-1, -13 and -14 appears to result from the lack 
of amino acid variation. Invariable SjTSP-25 antigenic-
ity, despite considerable amino acid variation, however, 
suggests there is a more complex relationship between 
amino acid and antigenic variation than previously pro-
posed. It was also predicted that antigenically variable 
TSPs would contain substantial differences in the length 
and location of antibody binding sites in the LEL domain 
[33]. Many sites within the LEL domain of SjTSP-2 and 
-8 with low antigenicity were associated with a greater 
occurrence of polymorphic sites. SjTSP-2 displayed evi-
dence of fractured epitopes around the LEL hypervari-
able region, and SjTSP-23 had shortened epitopes at the 
terminus of the LEL domain compared to the other SjT-
SPs. Incidentally, host-derived selection pressures appear 
to drive a reduction in antigenicity and antibody bind-
ing, thereby rendering certain SjTSPs less desirable to 
host immune components through the accumulation of 
mutations, highlighting a compelling mechanism of host 
immunomodulation and evasion by the parasite. Another 

tactic of host immune evasion and regulation, shown to 
be facilitated using SjTSP-23, is the inhibition and par-
alysation of host complement activation through pref-
erential binding to the Fc domain of non-immune IgG 
[26, 69]. This strategy would require portions of SjTSP-
23-LEL to remain attractive targets for IgG, which may 
be reflected here as a large increase in antibody binding 
affinity at site 123 in the LEL domain.

Despite evidence of hypervariability and diversifying 
selection pressures acting on regions encoding SjTSP-2-
LEL, high levels of purifying selection were seen across 
the entire protein, particularly in the transmembrane 
helical regions. The resulting sequence conservation may 
be critical for protein localisation and membrane stability 
and is likely necessary to maintain function and structure. 
Primarily, selection is episodic, acting more frequently 
on individual sites than on large gene regions, suggest-
ing that more frequent neutral or purifying selection may 
obscure phases of adaptive evolution [55]. Minimal local 
amino acid substitutions can be driven by adaptive evolu-
tion if the amino acid changes are biochemically advan-
tageous, as supported by the major functional alterations 
highlighted by TreeSAAP, and predicted changes in LEL 
immunogenicity. Use of amino acid substitutions to 
explore the effect of selection on protein structure and 
function provided a high degree of resolution and is con-
sidered a more sensitive approach than ω [63]. Evolution 
of antigenic variation, indicated here in certain SjTSPs, is 
also demonstrated in the pathogen Bordetella pertussis 
(aetiological agent of whooping cough), which has seen 
a recent resurgence and epidemiological shift to infect 
older children and adults [70]. The evolution of a novel 
strain, adapted to express an antigen variant that escapes 
vaccine-induced immunity, may have caused this shift 
through sustained selection pressure from host immunity 
[71]. This evolutionary strategy of immune avoidance is 
also utilised by the malaria parasite (Plasmodium spp.), 
where antigenic variation, such as seen in PfEMP-1, is the 
leading mechanism used to evade detection by the host’s 
immune system [72–74]. The parallels between schisto-
somes and other pathogenic organisms in their responses 
to host selection pressures, and mechanisms to drive 
antigenic variation, could inform us as to how antigenic 
variation can affect pathogenesis and parasite survivabil-
ity inside the host in general.

Selection-driven changes in functional properties of 
TSP-LELs, such as changes in refractive index in SjTSP-
8, polar requirement across SjTSP-23 and changes in iso-
electric point in SjTSP-2, alter protein folding and might 
interfere with SjTSP interaction with host molecules, 
such as antibodies. Antigenic drift, whereby amino acid 
substitutions lead to changes in antigenicity over time, 
could also be indicative of balancing selection acting to 
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maintain a greater than expected genetic diversity of SjT-
SPs through conservation of allelic variants in S. japoni-
cum populations. Function-altering mutations within 
the LEL domain could have direct implications for SjTSP 
immunogenicity and parasite survival within its defini-
tive host. Although the implications of physicochemical 
change on antibody binding affinity are seldom inves-
tigated, changes in such properties could significantly 
impact antigen structure, function and immunogenicity. 
Host immunity differs greatly between species [75], and 
therefore two different host species could generate con-
trasting and variable selection pressures [10], leading to 
different host assemblages promoting the development of 
host-specific mutations in schistosome TSPs [30, 33, 76]. 
It could therefore be important to elucidate the variation 
in ACGs within and between different host species in 
future studies, not only to increase knowledge regarding 
the development of an effective anti-schistosome vaccine 
but also for understanding the varying disease pathology 
seen in humans infected with schistosomes [77].

Members of the TSP family have consistently demon-
strated remarkable genetic diversity in schistosome spe-
cies [30, 32, 33, 78], which is thought to be responsible, 
at least in part, for the variable protective efficacy dem-
onstrated so far in TSP vaccine studies [19, 23, 24, 30, 
35]. Vaccine development often involves using mono-
morphic laboratory isolates [79]. However, the geo-
graphic variation revealed here for SjTSPs indicates that 
a diverse range of field-collected parasite isolates should 
be included in future vaccine trials as they better repre-
sent ‘natural’ parasite populations; this strategy would 
help develop more robust, efficacious vaccines. It has 
been demonstrated here, for the first time to our knowl-
edge, that SjTSPs with low genetic diversity and invari-
able antigenicity between provinces, such as SjTSP-1, 
-13 and -14, could therefore prove more robust vaccine 
candidates. Several immune-exposed schistosome anti-
gens, however, have demonstrated significant diversify-
ing selection across parasite populations [78]—similar 
to that indicated here for certain SjTSPs. This leads to a 
conundrum, as exposed antigens with an apparent pro-
pensity for diversification are likely polymorphic in natu-
ral, genetically heterogenous parasite populations, and 
vaccines formulated against them would likely be inef-
fective. Non-variable antigens, on the other hand, may 
be internal/non-exposed, rendering them difficult for 
the immune system to recognise and mount an effective 
response against [78]. As little is known about the cellular 
localisation or function of SjTSP-13, -14 and -25, further 
studies on these TSPs are warranted. Regardless, vaccine 
development based on a single polymorphic form of a 
TSP would likely offer low efficacy against natural para-
site populations. It has recently been proposed that the 

endeavour to develop a single-target vaccine has signifi-
cant limitations, with evidence suggesting a multi-target, 
multivalent DNA or mRNA vaccine would provide the 
best protection [80, 81]. Furthermore, any vaccine would 
require deployment alongside, and integration within, 
existing control strategies to be suitably effective [17, 81].

Conclusion
Despite significant reductions in infections across China, 
S. japonicum remains endemic in humans and animal 
reservoirs in several provincial regions [13], and the 
risk of re-emergence remains a legitimate concern [9]. It 
seems that the development of an effective anti-schisto-
some vaccine, intended to reach end-game elimination 
targets in China [8], has been hampered by the knowl-
edge gap associated with the genetic diversity and anti-
genic variability of vaccine candidate antigens within and 
between parasite populations. To begin to address this, 
measuring the genetic diversity and evolutionary pro-
cesses that effect vaccine targets, such as SjTSPs, could 
be crucial in identifying robust vaccine targets as well as 
potential mechanisms employed by the parasite to evade 
the host immune response. As such, these findings are 
not only useful in evaluating the use of SjTSPs as vaccine 
candidates, but they also provide an analytical framework 
with which to explore genetic and antigenic variability in 
other schistosome vaccine candidates. Findings reported 
here show that SjTSPs’ genetic and antigenic variability 
between geographically distinct parasite isolates could 
feasibly influence the effectiveness of the host immune 
response, impacting vaccine efficacy and representing a 
challenge for vaccine development against S. japonicum. 
It is therefore recommended that robust evaluation of 
vaccine target genetic and antigenic variability in natural 
parasite populations should be a prerequisite for any vac-
cine development campaign in addition to further immu-
nological work experimentally validating alterations in 
TSP antigenicity and antibody binding affinity detected 
here.
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The online version contains supplementary material available at https:// doi. 
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Additional file 1: Fig S1. Map of China outlining the seven parasite 
populations (red) used in this study, which were sampled by Young et al. 
[34], and provincial boundaries (white). In relation to sampling loca-
tions reported by Young et al. [34]; Ya’an (Sichuan) represents Tianquan, 
Jiujiang (Jiangxi) represents Yongxia, Chizhou (Anhui) represents Guichi, 
and Jiaxing (Zhejiang) represents Jiashan. Sampling location names were 
changed to reflect the proper district-level classifications. Created using 
QGIS v3.26.3 [87]. 

Additional file 2: Table S1. Identification of individual nucleotide bases 
under selection in SjTSP-2, SjTSP-8 and SjTSP-23 using MEME and FUBAR. 
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Additional file 3: Fig S2. Investigating site-specific functional altera-
tions resulting from amino acid changes using PROVEAN. SjTSP-2 (A), 
SjTSP-8 (B), SjTSP-23 (C), SjTSP1 (D), SjTSP-13 (E), SjTSP-14 (F), SjTSP-25 (G). 
A PROVEAN score < –2.5, denoted by the back horizontal line, outlines an 
amino acid change that will induce a functional alteration at that site. 

Additional file 4: Fig. S3. Identical predicted antigenicity profiles 
determined for tetraspanins (TSPs) of Schistosoma japonicum from Chi-
nese provinces; SjTSP-1 (A), SjTSP-13 (B), SjTSP-14 (C), SjTSP-25 (D). SjTSP 
proteins are considered antigenic where the antigenicity score is > 1 (solid 
black line).
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