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Parkinson’s disease is a progressive neurological disorder, characterized by
prominent movement dysfunction. The past two decades have seen a rapid
expansion of our understanding of the genetic basis of Parkinson’s, initially
through the identification of monogenic forms and, more recently, through
genome-wide association studies identifying common risk variants. Intrigu-
ingly, a number of cellular pathways have emerged from these analysis as
playing central roles in the aetiopathogenesis of Parkinson’s. In this review,
the impact of data deriving from genome-wide analyses for Parkinson’s
upon our functional understanding of the disease will be examined, with a
particular focus on examples of endo-lysosomal and mitochondrial dysfunc-
tion. The challenges of moving from a genetic to a functional understanding
of common risk variants for Parkinson’s will be discussed, with a final
consideration of the current state of the genetic architecture of the disorder.

This article is part of a discussion meeting issue ‘Understanding the
endo-lysosomal network in neurodegeneration’.
1. Parkinson’s disease—a complex and heterogeneous disorder
Parkinson’s disease (PD) is a progressive and chronic neurodegenerative dis-
order, first described by James Parkinson in 1817 [1,2]. It is characterized by
motor symptoms, such as resting tremor, slowness of movement (bradykinesia),
postural instability, gait impairment and limb rigidity [3–5]. There are also sub-
stantial non-motor symptoms, including memory and cognitive impairment,
apathy, anhedonia, insomnia, fatigue, urogenital issues, dysfunction of the auto-
nomic nervous system and loss of facial expressions. Some of the non-motor
symptoms, such as constipation, depression, rapid eye movement sleep behav-
iour disorder (RBD) and loss of smell (hyposmia), can emerge well before
the motor symptoms [6]. The neuropathology of PD is defined by the loss of
dopaminergic neurons, predominantly (although not exclusively) within the sub-
stantia nigra pars compacta, and by the accumulation of intracellular inclusions
called Lewy bodies, primarily made up of an aggregated form of the protein
α-synuclein [7,8]. Although PD is characterized by these pathological hallmarks,
there is a remarkable heterogeneity in the aetiology and pathogenesis of the dis-
order [5,9]. The hetereogeneity can manifest as variation in age of onset, disease
progression, clinical phenotypes, cellular pathways, neurotransmitter systems,
epigenetics and underlying genetic risks [10,11].

It is estimated that over 10 million people are living with PD across the
world [12], with males displaying 1.5 times higher risk than females of devel-
oping the disease [12]. There are several methodologies to subtype PD
depending on genetic, phenotypic or clinical features [13,14]. For example,
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ageing is a significant factor contributing to the risk
of PD and the age of onset itself varies owing to the
underlying genetic, environmental and pathophysiological
factors. PD can be categorized according to the age of onset
as: juvenile- (less than 20 years), young- (21–49 years),
middle- (50–69 years) or late-onset PD (greater than 70
years) [13]. Together, the juvenile- and young-onset PD
form the early-onset category of PD. The broader spectrum
of PD can also be sub-classified as: PD (where movement
dysfunction predominates), Parkinson’s disease with
dementia (PDD), or dementia with Lewy bodies (DLB),
according to neurological diagnoses but differing in their
secondary symptoms [3]. At present, there are no disease-
modifying treatments available, with therapies limited to
symptomatic interventions such as levodopa and deep
brain stimulation [9].

It is evident that PD is a complex disorder, and the
increasing number of people developing the disorder
demands a greater understanding of the mechanisms that
underlie the aetiology and pathogenesis to provide the
foundations for novel avenues of drug discovery.
20220517
2. Mendelian and monogenic forms of
Parkinson’s disease

The identification and characterization of genetic variants
that cause or predispose individuals to PD has provided
important insights into the cellular pathways that result in
neuronal death. A pivotal moment was the identification of
a mutation (an alanine to threonine coding change at codon
53, A53T) in the SNCA gene causative for an autosomal domi-
nant form of PD in 1997, which ushered in a new era of
human molecular genetics for PD. SNCA encodes α-synu-
clein, the major constituent of Lewy bodies, and a central
player in the aetiology of PD (box 1) [15–20].

Prior to this, PD was considered a prototypic non-genetic
form of neurological disorder—occurring sporadically or
spontaneously [28–30]. Since then, substantial advances
have been made with regards to the identification of mono-
genic forms of Parkinson’s disease, spanning autosomal
dominant, autosomal recessive and X-linked patterns of
inheritance [28–30]. The monogenic forms of PD may not
always follow classical Mendelian inheritance, and may pre-
sent with varying ages of disease onset, depending on the
gene studied. Monogenic loci can be further subtyped
according to the clinical phenotypes such as tremor-domi-
nant, akinetic-rigid, postural instability, gait-difficulties,
mixed, or indeterminate subtype, depending on the primary
symptomatic predispositions [13,31]. They may also be classi-
fied according to the progression of motor and non-motor
symptoms, and it is apparent that auxiliary genetic or
environmental factors may affect disease causation in mono-
genic PD. A summary of monogenic variants associated with
Parkinson’s disease is shown in table 1.

The identification of monogenic forms of PD has pro-
vided the foundations for functional characterization of the
biological changes that result in neurodegeneration, studies
that have revealed several common pathways. These include,
but are not limited to, mitochondrial dysfunction, protein
aggregation and disruption of the endo-lysosomal system,
portrayed and summarized in figure 1 and table 1, and
reviewed in the references cited therein and in [5,61].
3. Common genetic risk for idiopathic
Parkinson’s disease

Monogenic PD represents a minority of cases—estimated to
be about 1 in 10, with some variation depending on the popu-
lation studied [62,63]. The overwhelming majority (>90%) of
people living with Parkinson’s do not have a single genetic
cause of their disease, and the overlap between the functional
biology of monogenic and idiopathic disease has only
recently begun to emerge [12]. This has been driven by
advances in genomic technology, reducing the cost of exten-
sive genetic analysis of large numbers of individuals, and
facilitating genome-wide association studies (GWAS) for idio-
pathic PD, in order to identify common genetic risk for the
disease [64,65]. These analyses identify allelic variants that
modulate the likelihood of a particular phenotype [66]. Several
large-scale GWAS have now been carried out for risk of Par-
kinson’s disease, with the most recent, published in 2019,
presenting a meta-analysis of over 30 000 cases and 1 000 000
controls [67]. This identified dozens of loci across the human
genome significantly associated with the risk of disease (fre-
quently projected as a Manhattan plot, as shown in figure 2).
With rapidly increasing numbers of participants, additional
studies have been carried out moving beyond absolute risk
of disease to assess genomic variation influencing age of
onset, progression, motor subtypes, and risk of dementia, as
well as providing insights into multi-ethnic heterogeneity in
risk [69–73]. Together, these are beginning to map out how
an individual’s genetic background influences the likelihood
of developing PD, and what happens following the onset of
symptoms.
4. Challenges of understanding genome-wide
association at a molecular level

The data emerging from GWAS are complex and represent a
starting point for translating genetic risk for PD into functional
insights rather than being a functional end point in and of
themselves. First, in the case of PD, the impact of each individ-
ual associated locus is relatively modest, with a small increase
in overall risk—to the point where taken individually there is
negligible predictive power. It is only when polygenic risk is
considered, merging multiple common risk factors, that any-
thing approaching clinical relevance can be arrived at [74,75].
Secondly, moving from the identification of associated loci to
pinpointing the biological changes driving that association is
a significant challenge [76]. The initial issue is the task of nomi-
nating a gene or genes as candidates underlying the association.
In some cases, this might be relatively straightforward, with
only one gene falling under the significantly associated single
nucleotide polymorphisms and/or with a clear functionally
impactful coding variant within the candidate gene. In many
cases, however, there may be multiple genes falling under the
association peak at a genome-wide significant locus. Of the
loci identified in the most recent meta-analysis for genome-
wide association in Parkinson’s disease, only a small fraction
of genes under the association peaks presented with conspicu-
ous functional links to previously identified Mendelian forms of
PD. For one example, in the SNCA gene on chromosome 4
(figure 3), the association is driven by non-coding variation reg-
ulating expression, distinct from the coding or copy number



Box 1. α-Synuclein

α-Synuclein aggregation is one of the most recognizable pathological features of Parkinson’s disease (PD). α-Synuclein in
complex with other pathological proteins such as tau or amyloid-β along with lysosomes, lipids and other proteins forms
pathological lesions known as Lewy bodies (box figure (a)) [21,22]. The presence of Lewy bodies in the brainstem or the
limbic region is a hallmark of PD, and the progression of those lesions to the neocortex defines PDD and DLB; however,
some heterogeneity exists in disease manifestation owing to additional genetic or neuronal factors [23]. Despite its clear
pathophysiological role in PD, the physiological function of α-synuclein is still debated. α-Synuclein can bind lipid mem-
branes and sense their curvature, which has led to the hypothesis that it plays a direct role in synaptic vesicle trafficking
and neurotransmitter release [24]. Additionally, α-synuclein has been reported to be involved in transcription and translation
[25], and plays a role in the fission and fusion of mitochondria in nigrostriatal dopaminergic neurons [26]. Further, synergistic
interactions have been suggested between α-synuclein, dopamine and calcium in nigral and locus coeruleus neurons [27].

At a genetic level, polymorphisms in the SNCA promoter are associated with idiopathic PD. Gene dosage also plays an
important factor in SNCA pathology, with gene duplications and triplications reported in PD and DLB—with the severity of
disease displaying a dose dependency [10]. Pathological coding mutations in the SNCA gene have been reported in PD,
including A30P, G51D, A53T and E46K, with variants increasing the propensity of α-synuclein to aggregate (box
figure (b)). α-Synuclein abnormalities have been associated with mitochondrial dysfunction such as mitochondrial DNA frag-
mentation, decreased protein import, decreased ATP production, and increased reactive oxygen species (ROS) production, as
well as endo-lysosomal dysfunction. This includes impairment of several steps in the endo-lysosomal machinery, thus
impacting the autophagic pathway and lysosomal degradation, and disruption of synaptic vesicle transport. α-Synuclein dys-
function also leads to alteration in the retromer trafficking and toxic aggregates in the form of cytoplasmic inclusions through
the endo-lysosomal pathway. One of the most prominent theories of α-synuclein aggregation is its spread from neuron to
neuron in a prion-like propagation, supposedly through endosome or through tunnelling nanotube formation [20].

(b) 1 61 95
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structural variants observed in the Mendelian form of the dis-
ease [78,79]. Notably, the majority of genes in the Nalls et al.
study [67] were nominated based upon proximity to the
sentinel single nucleotide polymorphism (that is, the poly-
morphism with the most significant association) for the
locus. Identifying the gene driving association, and defining
the mechanisms underlying association are, therefore, a non-
trivial undertaking—and one that will require substantial
efforts to complete [80]. An example of how to approach this
is provided by Kia and co-workers, who applied analysis of
expression, epigenetic modifications, and protein networks to
triage and nominate likely candidates emerging from the
2019 GWAS meta-analysis across the genome in PD [81].
There are limitations to such an approach, for example not
having accounted for epistasis or pleiotropy of the analysed
genes, besides assumptions that the true causal variant
is being triaged with certainty [81]. One possible way to over-
come this challenge is by using the Mendelian randomization
(MR) method, which can draw inferences on the effect of the
genetic risk variants, thus possibly providing a better predic-
tion of causation, based on stronger statistical powers [82,83].

Additionally, the majority of current GWAS studies have
been based upon data derived from Western cohorts [30].
This issue is being mitigated by more inclusive studies and
global initiatives like the Global Parkinson’s Genetics Pro-
gram, focusing on diverse cohorts. The novel hits derived
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from such studies underscore the heterogeneity of PD in
different populations. For example, Rizig and coworkers
identified a GBA1 risk variant in African and African-
admixed PD cohorts that is distinct from previously ident-
ified GBA1 risk alleles [84], Foo and coworkers found SV2C
and WBSCR17 as novel hits, along with GBA1, TMEM175,
and LRRK2 etc., in East Asian cohorts [85], an Indian study
found hits such as SNCA, TMEM175, GBA1, PRKN and
BSN [86], and a multi-ethnic study including Latin and
Latin-admixed populations identified SNCA, STXBP6 and
RPS6KA2 as novel loci in their meta-analysis [87]. Interest-
ingly, the effect of sample size is further demonstrated by
Grenn and coworkers, who found GBA1 as a risk factor in
European populations only after using larger sample size
obtained from diverse datasets [77].

Furthermore, the prevalence of idiopathic PD has been
found to be higher in males than in females, whereas there
has been no gender bias observed in monogenic forms of PD,
such as in LRRK2 G2019S mutation carriers. Recent GWAS
studies have explored the causation behind gender differences
in European cohorts. However, they have been unable to find
any conclusive argument from the analyses of the autosomal
and sex chromosomes [88–90]. A comprehensive meta-analysis
of several diverse cohorts also did not offer any leads on gender
differences [91]. Similar findings were observed in a recent
study, where gender differences in GBA1 variants could not
explain PD risk but predicted a stronger association of males
with DLB [92]. In summary, there are several challenges associ-
ated with the molecular dissection of Parkinson’s disease
GWAS, which can only be resolved by larger and inclusive
studies, with refined analyses. Until then, caution needs to be
exercised before drawing definitive conclusions.
5. Pathways to parkinsonism—mitochondrial
and endo-lysosomal dysfunction

Intriguingly, even with our incomplete knowledge of the
genes underlying genome-wide association, there is evidence
of convergence between the monogenic and common risk
variants found in PD. There are a number of genes that
are found in both aspects of genetic risk for Parkinson’s
disease—SNCA, as outlined above, but also LRRK2 on
chromosome 12 and GBA1 on chromosome 1 (see table 1)
[93,94]. This overlap implies shared biology between mono-
genic and idiopathic PD, and reinforces a role for specific
cellular pathways in the pathogenesis of PD. Genes high-
lighted by GWAS and underlying monogenetic risk point to
the endo-lysosomal system and mitochondrial quality control
as two distinct, but overlapping, pathways leading to PD
[95,96]. The endo-lysosomal system is formed by dynamic
membrane-bound structures that are involved in processes
such as endocytosis, phagocytosis and autophagy to carry
out complex functions like macromolecule sorting, cellular sig-
nalling, proteostasis, organelle homeostasis and membrane
organization. The terminal organelle, the lysosome, is a
primary catabolic organelle that has the capacity to break
down aggregated proteins or even entire organelles, such as
mitochondria. It also serves as a signalling hub that communi-
cates information about amino acid availability or proteotoxic
stress to the rest of the cell. Mitochondria, in contrast, are the
main producers of cellular energy but also ROS. As ROS can
be damaging to the cell and mitochondria themselves, a
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functioning mitochondrial quality control system is vital in
maintaining cellular health. The Parkinson’s disease-associated
cluster of proteins implicated in the endo-lysosomal system
includes the lysosomal β-glucosylceramidase (encoded by
GBA1), the lysosomal polyamine exporter ATP13A2 [97], the
endoplasmic reticulum (ER)-to-lysosome lipid transfer protein
VPS13C [98,99], the lysosomal proton channel TMEM175 [100]
and VPS35, which is part of the retromer complex involved in
endo-lysosomal sorting of proteins (table 1 and figure 1). Of
note, some of these candidates, e.g. VPS13C, have been ident-
ified in monogenic forms of PD and via GWAS. Together,
these proteins highlight deficits in lysosomal metabolic pro-
cesses and sorting events along the endo-lysosomal pathway
as disease-causing in PD. On the other hand, PINK1 and
PRKN are key players in the mitochondrial quality control
system by instigating the removal of damaged mitochondria
via autophagy. Additionally, CHCHD2 and VPS13C can
impact mitochondrial quality control in a PINK1/PRKN-
dependent manner [101–103]. Notably, perturbations of
genes influencing the endo-lysosomal system may also affect
mitochondrial quality control and vice versa. Lysosomal dys-
function will impact mitochondrial quality control as fusion
with the lysosome is the final degradative step in the autopha-
gic removal of organelles, and organelle cross-talk, e.g. via
lysosome–mitochondria contact sites, impacts the function of
each organelle [104].
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However, the task of defining the candidate genes at loci
identified through studies for Parkinson’s disease is still
ongoing. To illustrate some of the challenges it presents, and
how novel associations are expanding a role for the endo-lyso-
somal system and mitochondrial dysfunction in Parkinson’s
disease, two case studies are presented here—examining the
loci at chromosomes 7p15.3 and 16q11.2/17q21.
6. Chromosome 7p15.3, GPNMB and lysosomal
function

The association at chromosome 7p15.3 was first identified as a
Parkinson’s disease risk-associated allele through a two-stage
meta-analysis as an extension of a previously conducted
GWAS [105]. This association occurs as a non-coding A to G
change at rs199347 on chromosome 7 [106], with three candi-
date genes (KLHL7, NUPL2 and GPNMB) in linkage
disequilibrium falling under the association peak (figure 4).
To discriminate between these three candidate genes, an
expression quantitative trait locus analysis was carried out, indi-
cating the risk allele is associated with increased brain
expression of GPNMB, but not KLHL7 or NUPL2 [107,108].
Coincident with this, the sentinel single nucleotide polymorph-
ism sits within the GPNMB locus. These data, therefore,
support increased expression of GPNMB in brain tissue as
being associated with heightened PD risk at this locus. It is
worth noting, however, that this does not exclude a role of
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KLHL7 or NUPL2, as additional transcript-specific expression
quantitative trait loci (eQTLs) at this locus are associated with
differential expression of both genes in immune tissues [108].
This indicates a potentially complex function of this eQTL,
and highlights the need to consider the roles that several differ-
entially expressed genes can play in different cell types and
tissues, and at different disease stages.

GPNMB has been implicated in melanosome formation,
autophagy, inflammation and various human diseases. Specifi-
cally, increased GPNMB expression has been linked to poorer
prognosis in breast cancer patients [109], and mutations in
the GPNMB gene have been named as causal of the skin pig-
mentation disorder amyloidosis cutis dyschromica (ACD)
[110]. Since the discovery of the association between GPNMB
and Parkinson’s disease, several studies have observed
GPNMB function in the context of neurodegeneration and
models of PD-related pathology. Increased Gpnmb transcription
has been observed in rodent models of PD [111], while post-
mortem brain tissues of PD patients display increased
GPNMB protein, specifically within the substantia nigra
[112]. Moloney and co-workers observed raised GPNMB
levels in the context of both α-synucleinopathy and lipidopa-
thy. While elevated α-synuclein levels showed no effect on
Gpnmb expression, inhibition of glucocerebrosidase activity
(and therefore induction of lipidopathy) resulted in marked
increases in GPNMB expression, implying a role of GPNMB
in the context of lipid accumulation and lysosomal dysfunction.
Additional work, motivated by the linkage of increased
GPNMB expression and PD risk, hypothesized a protective
effect of Gpnmb ablation in various mouse models of neuro-
degeneration, but found no effect of Gpnmb knockout when
compared with wild-type mice [113]. By contrast, a recent
study functionally implicates GPNMB in the cellular uptake
of α-synuclein, giving rise to the possibility that GPNMB aids
the spreading of α-synuclein throughout the brain in PD
[107]. Intriguingly, there is evidence accruing to support a
role for GPNMB in lysosomal integrity—although how these
data relate to a putative role for GPNMB in PD is, to date,
unclear [114,115]. Taken together, there is an emerging yet
still incomplete picture of GPNMB’s involvement in PD
pathology, especially regarding the endo-lysosomal system.
Indeed, most of GPNMB’s proposed involvement in
lysosomal function has been the result of observations made
in lysosomal storage disorders [116–118]. Van der Lienden
et al. [118] describe GPNMB as an emerging biomarker for
lysosomal dysfunction, but its cellular and molecular role in
disease mechanisms remains elusive [118]. While strides have
been made in our understanding of GPNMB’s role in PD,
evidence suggests it performs a complex function in PD
pathobiology and the endo-lysosomal system, necessitating
further investigation.
7. Chromosomes 16q11.2/17q21, KAT8/KANSL1
and mitophagy

Mechanistic insight into the association at 16q11.2 emerged
from an unbiased functional screening approach. Based on
the hypothesis that idiopathic and Mendelian PD share
common underlying disease pathomechanisms, Soutar and
co-workers sought to investigate whether Parkinson’s disease
risk GWAS candidates regulate the PINK1/Parkin-dependent
mitophagy process [119]. In this study, 36 PD risk GWAS can-
didate genes from significant risk loci reported in the 2017
PD GWAS were first prioritized through a triage process
applying bioinformatic strategies [67,120,121]. Phenotypic
screening and a primary validation of prioritized PD
GWAS risk genes, revealed KAT8 to be a novel regulator of
the PINK1/Parkin-dependent mitophagy process, with
KAT8 knockdown leading to a reduction in phospho-ubiqui-
tin (Ser65) deposition. The KAT8 gene is located within the
16q11.2 risk locus (figure 5), although, as shown by the
association signal at this locus, there are many potential can-
didate genes. KAT8 is a lysine acetyltransferase that
represents the catalytically active subunit of the non-specific
lethal (NSL) epigenetic remodelling complex, which is
responsible for the deposition of pro-transcriptional histone
H4 acetylation modification [122]. The NSL complex has
been shown to be associated with organism development,
cellular homeostasis, and mitochondrial DNA transcription
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Figure 6. Endo-lysosomal pathways and genes implicated by genome-wide association studies for Parkinson’s disease. KAT8 and KANSL1 (KAT8 and KANSL1) have
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[123–125]. Specifically, KAT8 is involved in cerebral and
neural stem cell development, and its variants have been
linked to intellectual disability, epilepsy and autism [126].
Soutar et al. showed that knockdown of several other com-
ponents of the NSL complex also lead to impairments in
Ser65 phospho-ubiquitin deposition, including the NSL com-
plex member KANSL1, which is itself another PD GWAS
candidate risk gene [119,127]. KANSL1 is located within the
17q21 PD risk locus, which is in linkage disequilibrium
with the commonly occurring MAPT H1 haplotype
[119,127,128]. Besides this, genetic changes in KANSL1 play
a causative role in Koolen–de Vries syndrome in children,
which is characterized by intellectual disability, epilepsy, neu-
romotor phenotypes and other neurocognitive abnormalities
[129]. KANSL1 and KAT8 KD were both shown to reduce the
mitochondrial accumulation of PINK1 upon mitochondrial
membrane depolarization, and consequently downstream
PINK1-dependent steps of the mitophagy cascade. Given
the canonical function of the NSL complex as a pro-transcrip-
tional epigenetic remodelling complex, impairments in
PINK1 gene expression represented a strong candidate mech-
anism accounting for the PINK1-deficits observed. In line
with this hypothesis, the authors showed reduced PINK1
mRNA levels following both KANSL1 and KAT8 siRNA
knockdown. Of relevance, eQTLs and allele-specific
expression (ASE) analysis linked PD risk at these two loci
with reduced KANSL1 and KAT8 expression [130,131], in
line with the phenotypic data highlighting impaired PINK1-
dependent mitophagy initiation. In addition to PINK1 mito-
phagy initiation, KANSL1 and KAT8 have also been shown
to play an important role in regulating the expression of
autophagy-related genes, autophagy and lysosomal function,
further implicating the NSL complex in endo-lysosomal
regulation, beyond PINK1 mitophagy alone [123,132,133].
8. Constructing a genetic architecture for
Parkinson’s disease

These two examples are functionally congruent with the evi-
dence from a number of other genome-wide associated
candidate genes as contributing to dysregulation of endo-
lysosomal function in idiopathic PD, mapping onto that
observed in monogenic PD (figure 6).

Building on the insights from GWAS, it is now possible to
move beyond the dichotomous divide between monogenic and
idiopathic (including polygenic) forms of the disorder and start
to construct a comprehensive genetic architecture for PD. There
is substantial evidence for a continuum of risk, quantified as
altered odds ratio for disease, for several of the genes involved
in monogenic Parkinson’s disease, such as SNCA, LRRK2 and
GBA1 (all with direct or close links to the endo-lysosomal
system). These can be integrated into an increasing number
of more common variants in strong candidate genes for
increased risk of disease—as well as a smaller number of var-
iants associated with lowered odds ratio and therefore
decreased risk of disease (figure 7). This architecture has impor-
tant implications for our understanding of PD. It provides
evidence for shared aetiology between monogenic and idio-
pathic PD, while simultaneously highlighting the breadth
of the disease pathways involved in the disorder. A key conse-
quence of the former is that it increases the likelihood of drugs
being developed to target monogenic PD, such as those linked
to α-synuclein and LRRK2 forms, having relevance to the
wider population of people living with the disease. Several
of these, such as the antibody therapies aiming to remove
α-synuclein from the brain, or small molecule kinase inhibi-
tors of LRRK2, are currently undergoing clinical trials
(NCT04777331, NCT05424276, NCT05670782, NCT03976349,
NCT03710707, NCT04056689) [134–136]. Importantly, the
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identification of pathways linked to disease risk, beyond indi-
vidual genes and proteins, also opens the door to targeting
processes rather than individual genes—expanding the
spectrum of drug discovery in Parkinson’s.
9. Conclusion and future perspectives
Taken together, the past two decades have borne witness to
substantial advances in our understanding of the causes of
PD, with much of this deriving from enhanced comprehen-
sion of the molecular genetics of the disorder. However,
much remains to be done. Most obviously, the functional
changes underlying the majority of genome-wide associated
loci are obscure—information that has the potential to pro-
vide even greater insight into the events that precede and
drive neurodegeneration in the PD brain. The increasing
application of multi-omic analysis, alongside detailed
mechanistic characterization, provides hope that many more
genome-wide associated loci will be clarified in the coming
years. It is also clear that efforts to increase the diversity of
genetic analyses of Parkinson’s will yield important novel
insights into the genetic architecture of the disease. Coupled
to more sophisticated stratification of patient populations and
moving beyond absolute risk to disease modifiers and
progression, there will undoubtedly be more genetic infor-
mation feeding into functional investigations—including
those targeting mitochondrial quality control and the endo-
lysosomal system. Although categorizing risk genes into
functional categories can help to focus research efforts,
assigning GWAS risk genes requires unbiased approaches
and an open mind in order not to overlook novel avenues
to understanding and treating PD. Crucially, insights deriv-
ing from these studies will aid in defining molecular sub-
types of Parkinson’s and support the development of novel
drug targets for this disorder.
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