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Abstract

Introduction: Neurological conditions such as Alzheimer's disease and stroke

represent a substantial health burden to the world's ageing population. Cerebro-

vascular dysfunction is a key contributor to these conditions, affecting an in-

dividual's risk profile, age of onset, and severity of neurological disease. Recent data

shows that early‐life events, such as maternal health during pregnancy, birth weight

and exposure to environmental toxins can ‘prime’ the vascular system for later

changes. With age, blood vessels can become less flexible and more prone to

damage. This can lead to reduced blood flow to the brain, which is associated with

cognitive decline and an increased risk of stroke and other cerebrovascular dis-

eases. These in turn increase the risk of vascular dementia and Alzheimer's disease.

Objectives: We aim to explore how early life factors influence cerebrovascular

health, ageing and disease.

Methods: We have reviewed recently published literature from epidemiological

studies, clinical cases and basic research which explore mechanisms that contribute

to cerebrovascular and blood‐brain barrier dysfunction, with a particularly focus on

those that assess contribution of early‐life events or vascular priming to subsequent

injury.

Results: Perinatal events have been linked to acute cerebrovascular dysfunction

and long‐term structural reorganisation. Systemic disease throughout the lifetime

that produce inflammatory or oxidative stress may further sensitise the cere-

brovasculature to disease and contribute to neurodegeneration.

Conclusions: By identifying these early‐life determinants and understanding their

mechanisms, scientists aim to develop strategies for preventing or mitigating ce-

rebrovascular ageing‐related issues.
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Key points

� Early‐life events, such as low birth weight or preterm birth, can increase an individuals' risk

of cerebrovascular and neurodegenerative disease.

� Perinatal inflammation or oxidative stress can cause short‐term changes in vascular tone

and blood‐brain barrier (BBB) function.

� Altered angiogenesis and cerebrovascular structure also occur and may sensitise the brain

and cerebrovasculature to subsequent injury.

� More work is required to understand mechanisms of injuries and find biomarkers to predict

risk or therapeutic potential.

1 | INTRODUCTION

Blood supply to the brain, providing essential nutrients and removing

metabolic waste, is facilitated by the dynamic actions of the cere-

brovasculature. As with other vessels in the body, endothelial cells

form the lumen of the cerebral blood vessels, reacting to circulating

mediators and physically and chemically interacting with surrounding

contractile cells to allow local regulation of cerebrovascular func-

tion.1 Distinct from other vascular beds, however, is the specialisa-

tion of the endothelial cells that create the blood‐brain barrier (BBB);

a physical barrier mediated by paracellular junctions in combination

with an array of active influx and efflux transports and signalling

mechanisms that is essential for maintaining brain homoeostasis.1,2

For many years there was a belief that the brain was an immuno‐
privileged site and that the BBB contributed to this status. Howev-

er, it is now clear that neurological injury is associated with inflam-

matory processes and that there is signalling across the BBB that can

both modulate neurological injury and allow systemic assessment of

disease status.3 Moreover, there is increasing evidence that disrup-

tion in cerebrovascular function, be that regulation of cerebral blood

flow (CBF), BBB integrity or signalling across the endothelium, can

exacerbate neurodegenerative disease1,4 and may even be part of the

disease aetiology in some conditions.1,5 Here we explore the value in

casting our scientific eye even early in the disease process, consid-

ering the potential contribution of systemic disease and early‐life
events to the functioning of the cerebrovasculature. By doing so,

we hope to identify mechanisms of dysfunction that could be utilised

as biomarkers or therapeutically targeted to prevent serious vascular

disease and its neurological sequels.

1.1 | Associations between vascular function and
neurodegenerative disease, and mid‐life risk factors

Links between cerebrovascular function and neurological diseases

such as stroke and vascular dementia are well established,4,5 and have

recently been broadened to other neurodegenerative disease with

numerous studies showing BBB disruption in postmortem Alzheimer's

disease brains,6 and correlation between Alzheimer's disease and

other measures of poor cardiovascular health.5 Over the last 10 years,

neuroimaging methods have detected a trajectory of BBB breakdown

and cardiovascular disruption in ageing, and cases of cognitive

impairment, well before the development of disabling clinical signs.

For example, two small clinical studies using dynamic enhanced

magnetic resonance imaging (MRI; movement of Gadolinium contrast

agent adjusted for CBF) to measure BBB permeability in individuals

with an early Alzheimer's diagnosis compared to age‐matched

controls, showed increased permeability in the patient group,7,8 with

measures of increased permeability correlating with cognitive

decline.7 Pericytes in the neurovascular unit are important for regu-

lating local blood flow and supporting BBB properties of the cerebral

endothelial cells. Reduced pericyte actions have been associated with

altered vascular function in neurodegenerative disease. Postmortem

studies using intracerebral fibrinogen as a marker of BBB breakdown,

have shown a significant decrease in the pericyte marker PDGFRβ
correlated with an increased fibrinogen level that also correlated with

amyloid‐β plaque load in brains from Alzheimer's disease patients,9

and decreased pericyte coverage of white matter vessels in post‐
stroke dementia, vascular dementia and brains for Alzheimer's dis-

ease patients.10 Separately, in a larger imaging study, Freeze, et al.11

correlated BBB transit, measuredwithMRI, withMRI features of small

vessel disease (SVD, e.g. white matter hyperintensities, lacunas,

microbleeds and increased perivascular space) and cognitive capacity

in normally ageing individuals, as well as those with mild cognitive

impairment and Alzheimer's disease. SVD has been strongly associ-

ated with cognitive decline12 in its own right, with the hypothesised

mechanism being that reduced CBF and endothelial dysfunction

contribute to the MRI‐detectable pathologies and that the cognitive

impairment related to these is at least partly due to disruption of white

matter tracts that are critical for integrated and timely cognitive

function.12 SVD may, therefore, exacerbate early Alzheimer's disease

pathology via these aligned mechanisms. Collectively these studies

suggest that loss of pericytes, altered regulation of blood flow and

increased BBB permeability occur naturally in ageing and may be

exacerbated in the early stages of cognitive impairment, when they

directly contribute to reduced processing capacity.

The 2023 update on heart‐disease and stroke by the American

Heart Association,13 found that individuals with chronic high blood

pressure (hypertension), heart disease, stroke and diabetes were at a

greater risk of an early dementia diagnosis. Hypertension can lead to

damage to the blood vessels in the brain, making the BBB more

permeable.14 Equally, diabetes can affect the BBB through various

mechanisms, including oxidative stress and inflammation.15 In addi-

tion, prolonged exposure to high blood sugar levels can lead directly

to BBB dysfunction. This can allow harmful substances from the

bloodstream to enter the brain, potentially contributing to cognitive
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decline and other neurological issues. These data suggested that

altered BBB function maybe a causative factor in the link between

these systemic diseases and dementia.

1.2 | Early‐life events as risk factors for long‐term
neurological damage

While most of the work in this area has focused on links between

adult cardiovascular health and later neurodegenerative disease,

attention is turning to contributions of earlier life events to an in-

dividual's risk burden, facilitated by the natural ageing of a number of

birth cohorts commenced in the 1930s and onwards. For example,

analysis of data from multiple long‐term birth cohorts has shown that

low birth weight, low childhood intelligence quotient (IQ) and low

level of education were all associated with MRI findings interpreted

as SVD, independent of adult risk factors.16 Cerebrovascular disease

in adulthood has also been correlated with maternal health during

pregnancy17 and intrauterine growth restriction.18 Preterm birth,

which affects 11% of infants worldwide, has been shown to increase

the risk of cerebrovascular disease, including hypertension.19 Pre-

term birth also associates with increased occurrence of both hae-

morrhagic and ischaemic stroke in the Swedish population (born

1973–1994),20 although an equivalent study in the Helsinki birth

cohort (born 1924–1944) did not find this association.21 Moreover,

preterm birth has been linked to neurocognitive impairment in later

life using a battery of tests established for identifying Alzheimer's

disease.22 As adults in these cohorts are currently aged between 50

and 70 years of age, we expect more data will be available over the

next 20 years directly related to neurodegeneration.

It is currently unclear how much risk of long‐term injury can be

attributed to the perinatal period. In the study of Backhouse, et al.,16

they calculated that the perinatal factors identified, for example, low

birth weight and low childhood IQ, collectively contributed only 1% of

the variation seen in adult measures of SVD independent of adult risk

factors. Similarly, while Crump, et al.20 showed a clear effect of pre-

maturity on outcome, their sibling assessment also implied familial

factors contribute to risk of stroke in adulthood. In considering these

calculations, it is important to remember two key things. Firstly, these

are very non‐specific measures of altered cerebral development, with

no specific associations with vascular dysfunction. Secondly, the au-

thors of these studies deliberately separate early life events from

later risk factors, and therefore do not consider the potential for early

life events compounding risk with later life risk variables, such as

smoking and hypertension. Data shows, for instance, that preterm

birth does associate with increased hypertension in a cohort of young

Swedish men.23 What these studies do, therefore, is show that peri-

natal events can influence the brain over multiple decades, contrib-

uting to the risk of neurodegenerative disorders. What is required

now is more specific and focused work, aimed at understanding how

early life events compound risk, and whether an understanding of

these will allow us to monitor risk and provide preventative therapy

over a lifetime. For example, does repetitive vascular injury

throughout a lifetime disrupt endothelial function in a quantifiable

way, that can be measured as a biomarker of risk? Though beyond the

immediate focus of this work, when considering the possibility that

early‐life events may sensitise the brain to vascular disease and

cognitive impairment decades later, it is important to note that early

life events that are associated with increased SVD16,18,20 are also

associated with delayed or impaired myelination (e.g.24) and may

result in reduced grey matter or total brain volume.25–27 Collectively

these could limit the brain reserve capacity of an individual,28 and

therefore increase the risk of cognitive impairment or neuro-

degeneration. Similarly, in the context of preterm birth as a risk factor

for later life cerebrovascular disease (CVD), there may be a genetic

element to this risk in addition to any developmental or injury induced

component. Women who have a history of giving birth preterm also

have an increased risk CVD (ischaemic heart disease, stroke and

atherosclerosis) in later life.29 Additionally, conditions that predispose

to preterm birth, such as pre‐eclampsia, also associate with maternal

cerebrovascular disease.30

1.3 | How do early life events directly affect
cerebrovascular structure and function?

The acute effects of preterm birth on the cerebrovascular has been

studied to some extent in clinical populations. CBF, measured by

phase contrast‐MRI of combined carotid and basilar artery blood

flow normalised to brain volume, has been reported to be greater in

term‐born infants compared to infants born at 24–32 weeks of

gestation.31 By contrast, a more recent, though less well powered

study using arterial spin labelling to measure regional CBF in very

preterm infants post‐birth, showed a significant increase in CBF at

term‐equivalent age, which was suggested to reflect an adaptation to

the long‐postnatal period experienced by these infants.32 A complex

set of haemodynamic responses have also been described in sheep

models of preterm birth or systemic inflammation, supporting the

idea that the developmental stage significantly modifies cerebro-

vascular function during injury. In one model, intrauterine inflam-

mation (20 mg bolus of lipopolysaccharide, LPS, into the amniotic sac)

was induced 7 days before mechanically aided preterm birth; data

showed that LPS exposed foetuses had a higher carotid artery blood

flow immediately following birth, with reduced cardiopulmonary

response to haemodynamic challenge compared to controls.33 In a

different system, systemic inflammation produced by 1–2 μg/kg LPS

i.v. resulted in a rapid change in the haemodynamic environment of

foetal and neonatal sheep, with a significant decrease in arterial

blood pressure and an increase in CBF occurring in foetal sheep,

compared to baseline and neonatal response.34 Both foetal and

neonatal sheep showed initial vasoconstriction followed by vasodi-

lation, though contraction was higher and longer lasting in the

newborns, associated with a short‐term reduction in CBF.34

There are numerous mechanisms by which early life events, such

as those described above, may contribute to altered cerebrovascular

function at a cellular level. Inflammation, a common mediator of
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many injury conditions, including early life events such as preterm

birth, is one of the most well studied. The BBB, present in the earliest

cerebral vessels,35 has been shown to be susceptible to

inflammation‐induced increases in permeability in an age‐dependent
manner, though not specifically related to immaturity.36,37 These

studies showed limited BBB injury in younger and adult animals to

either acute systemic or intracerebral inflammation, but a large BBB

breakdown at intermediate postnatal ages.36,37 This sensitivity has

been found to recapitulate in the ageing brain,38 adding to the idea of

a natural vascular senescence39 that may be accelerated by events

throughout the lifetime and contributed to altered functioning of the

BBB (or increased sensitisation to injury) in ageing.40 Not every in-

flammatory or otherwise injurious event in the developing brain

causes breakdown of the BBB, however; for instance, alterations in

vascularisation of the developing brain following ZIKA infection have

been shown without substantial evidence of altered barrier perme-

ability.41,42 The exact nature of these changes vary with experimental

model and time post injury, but collectively suggest an altered

angiogenic environment in the perinatal brain following infection.

There is substantial evidence from clinical and experimental

models that acute, severe brain injury associated with birth asphyxia,

or other causes of hypoxia‐ischaemia, results in increased perme-

ability of the BBB (reviewed recently by43). In these examples, as in

adult traumatic brain injury, altered BBB permeability appears to be

transient, with recovery 3–7 days post‐injury, and timing partially

dependent on the size of the molecule used to assess perme-

ability.44,45 Inflammatory responses have been well described in

these models,46,47 in addition to the altered oxygen and metabolites,

and are thought to be a substantial contributor to cellular injury.47

What is less well established, is the long‐term effect of these path-

ological processes, inflammatory or otherwise, on vascular structure

and function, though two recent studies give us some insight into this.

One of these, a rodent model designed to determine the mechanism

of viral‐induced cerebral arteriopathy,48 showed that systemic

administration of the toll‐like receptor 3 agonist, polyI:C (5 mg/kg, i.

p.), in juvenile (postnatal day, P, 18) mice resulted in a substantial

BBB breakdown over a 3‐day period.48 Moreover, analysis showed

increased collagen deposition around cerebral blood vessels within

72 h, reduced vessel number and increased lacunarity at 10 days post

treatment. These data suggest that early endothelial inflammation

and, in this case, neutrophil dependent BBB breakdown,48 can result

in long‐term structural changes to cerebral vessels. In a different

timeframe, a foetal sheep model of intrauterine growth restriction

following chronic hypoxia, identified structural changes in the

microvasculature 20 days after intervention was initiated, including

reduced vessel number and endothelial cell proliferation.49 These

occurred together with increased BBB permeability, a 70% reduction

in pericyte number around blood vessels in the white matter, and a

reduced astrocyte coverage of these vessels.49 More work is required

to fully understand the long‐term consequences of these early life

events on the structure, function and resilience of the

cerebrovascular system, but together these data suggest that events

happening in the perinatal period can produce acute changes in ce-

rebrovascular function along with short‐ and longer‐term structural

changes to the vessels.

It is important that future work determines if these early

changes subsequently alter cerebrovascular responses to systemic

disease, as well as contribute to cerebrovascular ageing. This is

particularly important as systemic diseases that cause inflammation

throughout the body (e.g. diabetes type 2) also leads to the disrup-

tion of the BBB. In the case of diabetes, the BBB disruption is at least

partly a result of activation of metalloproteinases.15 Diseases such as

systemic lupus erythematosus and multiple sclerosis (MS) involve

chronic inflammation and are also associated with BBB dysfunc-

tion.50,51 Inflammatory cytokines and immune cells can activate

pathways that compromise the integrity of the BBB, allowing im-

mune cells and potentially harmful molecules to enter the brain. In

many of these cases, altered BBB permeability has been detected

prior to clinical disease, or in ‘normal appearing’ areas outside of

active lesions.52 Moreover, certain systemic infections can directly

affect the BBB, for example, pathogens like human immunodefi-

ciency virus (HIV) can cross the BBB and establish infection within

the brain,53 while circulating bacteria have a complex interaction

with the BBB depending on the specific bacterial agent.54 Ageing

itself can lead to changes in the BBB, with recent work on senes-

cence suggesting that endothelial cells in the cerebral vessels reduce

nitric oxide production, become pro‐inflammatory and lose tight

junction protein connections (reviewed by55). These structural and

functional alterations of the BBB, reduced autoregulation of CBF and

increase access of neurotoxic substances to the brain, potentially

contributing to age‐related cognitive decline and neurodegenerative

diseases.

1.4 | Experimental support for early vascular
priming exacerbating subsequent vascular
dysfunction and neurological injury

The capacity for inflammation to alter the BBB as part of systemic

disease may explain findings that systemic inflammation can exac-

erbate neurological injury, such as dormant MS lesions, resulting in

BBB disruption in situations when underlying cerebral inflammation

is insufficient to produce this effect.56,57 This response is different

from the pre‐ or post‐conditioning phenomena that have been re-

ported by many research groups (e.g.58–60), where systemic inflam-

mation in the hours before or after central inflammation can reduce

cerebral injury. Instead, it appears that there may be an interaction

between a cerebral endothelium that is already primed by the

dormant lesion, that then reactivates quickly in response to high

levels of circulating inflammatory mediators.56 Molecular priming,

such as this, is one potential mechanism by which multiple pathol-

ogies and disease states across a lifetime may contribute to the
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exacerbation of neurological disease. Prolonged structural remodel-

ling is another, though more work is required to understand the

cumulative effects of vascular injury. As one pointer to this, data

from studies in rats suggest that long‐term alterations in BBB

permeability may occur progressively after an early‐life chal-

lenge.36,61,62 In these studies, it was shown that an acute breakdown

of the BBB produced by LPS induced‐systemic inflammation in the

newborn rat,36 could be extended over the postnatal period by

repetition of the LPS administration every 2 days up until P8.61 The

BBB remained capable of repair, with no acute alteration in

permeability, measured for the small‐molecular weight marker su-

crose, detected either at P9 or P20. However, when assessed again

in adulthood there was a significant increase in sucrose permeability

compared to vehicle treated controls.61 Electron microscopical

analysis showed largely normal tight junction organisation between

endothelial cells, though claudin‐5 identification using light‐
microscopy indicated a reorganisation of the tight‐junction protein

in a proportion of vessels within the cortex.62 Interestingly, these

adult‐acquired alterations in BBB function were also associated with

the detection in adults of behavioural differences not found at earlier

time points.62

1.5 | COVID‐related future of cerebrovascular
dysfunction?

One topical point for consideration on this subject is the potential

effect of SARS‐CoV‐2 infection, producing COVID‐19. There is sub-

stantial evidence that the SARS‐CoV‐2 virus can interact with the

cerebrovasculature resulting in altered vascular tone, inflammation,

oxidative stress and increased coagulation.63 The spike protein of

SARS‐CoV‐2 interacts with angiotensin converting enzyme 2 (ACE2),

which is highly, though heterogeneously, expressed throughout the

cerebrovasculature, and is at least partly responsible for these find-

ings.63 Clinical data from individuals exhibiting COVID‐19 show a

high incidence of cardiovascular or cerebrovascular events during

acute disease. For example, a review of neurological sequalae asso-

ciated with acute COVID‐19 have shown that approximately 6% of

affected individuals (primarily those in older age‐groups) were diag-

nosed with a cerebrovascular event (most commonly ischaemic

stroke), accounting for up to 60% of the neurological events detec-

ted.64 Larger, and more recent studies support these findings, though

with incidence rates of 0.5%–5% depending on the severity of

COVID‐19 disease.65 Of note, risk of cerebrovascular events con-

tinues in the post COVID‐19 period, with a number of studies

showing increased risk of stroke or other cerebrovascular events 1–

12 months following recovery.66–68 While data in the paediatric

population is more limited, an assessment of brain tissue collected

during the pandemic suggests that foetal exposure to COVID‐19 in-

creases incidence of haemorrhage in the developing cortex, associ-

ated with reduced claudin‐5 staining within the cerebral blood

vessels.69 In terms of potential long‐term sequalae, a retrospective

population study from the USA has also found an association be-

tween SARS‐CoV‐2 infection and stroke in the paediatric population;

specifically following infection, and not associated with acute COVID‐
19 disease or multisystem inflammation syndrome.70 It should be

noted that this study cohort was small, reflective of the overall low

risk of stroke in the population and the period of the pandemic during

which data was collected (March 2020 to June 2021), and therefore

more work is required to confirm these findings.

F I GUR E 1 Schematic representation of accumulative damage to the cerebrovasculature across a lifetime. This schematic shows the
hypothesised way early‐life events may sensitise the cerebral blood vessels to augmented injury as life continues. Early events result in acute
disruption, which is corrected but results in minor structural changes and endothelial molecular priming (indicated by dark blue receptors on
endothelial cell surface). Mid‐life events may result in further acute disruption, that is slower to repair, or more sever in the acute phase.

Ageing or later life events will result in more serious responses including endothelial dysfunction (indicated by darkening of the endothelium),
more substantial blood‐brain barrier breakdown and diapedesis of inflammatory cells, thickening of the basement membrane and altered
molecular response (indicated by light blue receptors on endothelial cell surface).
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2 | CONCLUSION

Early‐life events, including poor maternal cardiovascular health,

preterm birth and intrauterine growth restriction can result in acute

cerebrovascular dysfunction. Inflammation that occurs as part of all

of these conditions produces an evolving landscape of structural and

functional changes in the cerebrovascular that we are only just

beginning to understand. There is accumulating evidence that these

early‐life events may prime the cerebrovasculature to damage in

later life, increasing risk of cerebrovascular disease and neurological

impairment (see Figure 1). However, data on cerebrovascular injury

after early‐life events is limited and typically doesn't extend beyond

relatively short‐term changes. Basic research and epidemiological

studies are needed to understand how multiple inflammatory dis-

eases across a lifetime may affect the cerebrovascular function.

While we expect that perinatal events may increase risk of early‐
onset neurological events such as stroke or vascular dementia, it

will be complex to separate the effects of multiple risk factors. In-

dividuals with early‐onset ischaemic stroke, for example, already

have a different risk profile to those who have strokes at later

ages,71,72 with life‐style factors apparently exacerbating established

cardiovascular risk factors.72 In a landscape where more children are

surviving preterm birth, and where a whole population have been

exposed to SARS‐CoV‐2 infections and its cerebrovascular sequalae,

we risk a new epidemic of stroke and dementia cases in the future.

Understanding, identifying and ameliorating the effects of these early

life events is an essential task to prevent subsequent future disease.
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