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Multi-omics analysis reveals regime shifts in the gastrointestinal 
ecosystem in chickens following anticoccidial vaccination and 
Eimeria tenella challenge
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ABSTRACT Coccidiosis, caused by Eimeria parasites, significantly impacts poultry farm 
economics and animal welfare. Beyond its direct impact on health, Eimeria infection 
disrupts enteric microbial populations leading to dysbiosis and increases vulnerability 
to secondary diseases such as necrotic enteritis, caused by Clostridium perfringens. 
The impact of Eimeria infection or anticoccidial vaccination on host gastrointestinal 
phenotypes and enteric microbiota remains understudied. In this study, the metabolo­
mic profiles and microbiota composition of chicken caecal tissue and contents were 
evaluated concurrently during a controlled experimental vaccination and challenge trial. 
Cobb500 broilers were vaccinated with a Saccharomyces cerevisiae-vectored anticocci­
dial vaccine and challenged with 15,000 Eimeria tenella oocysts. Assessment of caecal 
pathology and quantification of parasite load revealed correlations with alterations to 
caecal microbiota and caecal metabolome linked to infection and vaccination status. 
Infection heightened microbiota richness with increases in potentially pathogenic 
species, while vaccination elevated beneficial Bifidobacterium. Using a multi-omics factor 
analysis, data on caecal microbiota and metabolome were integrated and distinct 
profiles for healthy, infected, and recovering chickens were identified. Healthy and 
recovering chickens exhibited higher vitamin B metabolism linked to short-chain 
fatty acid-producing bacteria, whereas essential amino acid and cell membrane lipid 
metabolisms were prominent in infected and vaccinated chickens. Notably, vaccina­
ted chickens showed distinct metabolites related to the enrichment of sphingolipids, 
important components of nerve cells and cell membranes. Our integrated multi-omics 
model revealed latent biomarkers indicative of vaccination and infection status, offering 
potential tools for diagnosing infection, monitoring vaccination efficacy, and guiding the 
development of novel treatments or controls.

IMPORTANCE Advances in anticoccidial vaccines have garnered significant attention in 
poultry health management. However, the intricacies of vaccine-induced alterations in 
the chicken gut microbiome and its subsequent impact on host metabolism remain 
inadequately explored. This study delves into the metabolic and microbiotic shifts in 
chickens post-vaccination, employing a multi-omics integration analysis. Our findings 
highlight a notable synergy between the microbiome composition and host-microbe 
interacted metabolic pathways in vaccinated chickens, differentiating them from 
infected or non-vaccinated cohorts. These insights pave the way for more targeted and 
efficient approaches in poultry disease control, enhancing both the efficacy of vaccines 
and the overall health of poultry populations.
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P rotozoan parasites of the genus Eimeria cause coccidiosis in poultry, and costs to the 
industry have been estimated to exceed £10 billion annually (1). Clinical coccidio­

sis manifests as poor body weight gain and feed conversion with diarrhea, bloody 
droppings, and mortality in severe cases. Infection induces strong pro- and anti-inflam-
matory cytokine responses that may exacerbate pathology (2–5). Clinical coccidiosis 
is commonly avoided through a combination of good husbandry, parasite chemopro­
phylaxis with anticoccidial drugs and/or vaccination using varied formulations of live 
parasites (6, 7). In some countries, public concern related to pathogen drug resistance 
and widespread use of antimicrobials in animal production are driving legislative and 
commercial changes, including increased use of anticoccidial vaccination (8). Although 
current live parasite vaccines are effective, considerable efforts are also being made 
to develop recombinant anticoccidial vaccines (9). In a previous study, a prototype 
inactivated yeast-based recombinant oral vaccine for Eimeria tenella was shown to 
result in reduced parasite replication, reduced caecal pathology and improved chicken 
performance compared to controls in commercial chickens (10). Using Saccharomyces 
cerevisiae to express and deliver E. tenella antigens apical membrane antigen 1 (EtAMA1) 
(11), immune mapped protein 1 (EtIMP1) (12), and repeat 3 from microneme protein 3 
(EtMIC3) (13) induced significant protection against high-level challenge in vaccinated 
Cobb500 broiler chickens (10). However, the impact of vaccination and subsequent 
parasite challenge on the host gut and its enteric microbiota were not evaluated. Oral 
administration of heat-inactivated and freeze-dried S. cerevisiae has previously been 
shown to ameliorate the effects of coccidiosis in broiler chickens while modulating 
the host immune response and microbiota (14, 15). Understanding the influence of 
a yeast-vectored anticoccidial vaccine on host-microbe interacted metabolome and 
microbiomes could therefore be used to improve future vaccine development.

Enteric microbiomes play crucial roles in shaping host physiological functions 
including provision of nutrients (16, 17), immune system maturation, and regulation 
(18, 19). Eimeria infection can cause imbalance in gastrointestinal (GI) ecosystems (20, 
21), commonly referred to as dysbiosis, and raises the risk of enteric comorbidities 
such as necrotic enteritis caused by Clostridium perfringens (22). Variation in the severity 
of damage caused by Eimeria infection has also been shown to be associated with 
differences in enteric microbiomes. For example, high-level caecal lesion scores recorded 
during E. tenella infection correlated with increased Enterobacteriaceae occurrence but 
decreased Bacillales and Lactobacillales (21). However, little is known about physiolog­
ical responses in gastrointestinal molecular and biochemical mechanisms, or varia­
tion in microbiota between immunologically naïve, infected, and vaccinated chickens. 
Few studies have provided insight into chickens' metabolic responses to infection 
or vaccination. Using an untargeted metabolomic profile assessment, Aggrey et al. 
(23) found that carnitine-derived metabolites involved in fatty acid metabolism, and 
thromboxane B2, 12-HHTrE, and itaconate involved in inflammatory responses, were 
influenced by Eimeria acervulina infection (23). In the same way, a human shingles 
vaccine trial revealed that key metabolites such as sterol class metabolites, arachidonic 
acids, phosphoinositide, and diacylglycerol, were essential to immune signaling (24). 
Here, we have created a multi-omics data set defining caecal microbial populations 
(lumen contents and tissue-associated) and caecal tissue metabolomes using high-
throughput sequencing of the 16S rDNA and liquid chromatography-mass spectrome­
try (LC-MS), respectively. We have used a multi-omics factor analysis (MOFA) (25, 26) 
machine learning model to systematically integrate data on caecal microbiota and 
the caecal metabolome sampled during an anticoccidial vaccine trial, investigating 
host microbe-associated signatures that can predict chicken health status and vaccine 
efficacy.
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RESULTS

Caecal pathology and parasite load post-Eimeria challenge demonstrates 
efficacy of a candidate yeast-vectored anticoccidial vaccine in commercial 
broiler chickens

We previously evaluated the efficacy of an experimental S. cerevisiae-vectored anticoc­
cidial vaccine using readouts of gut pathology (caecal lesion scores: 0–4), parasite 
replication (quantitative PCR of caecal tissue), and chicken performance (body weight 
gain, BWG) following oral challenge of Cobb500 broiler chickens reared under commer­
cial conditions with 15,000 sporulated oocysts of E. tenella (10). Briefly, lesion scores at 
6 days post-infection (dpi) were lower in vaccinated chickens compared to unvaccinated 
controls (V-C vs. UV-C; P < 0.001; Fig. 1A). Parasite replication measured by qPCR as 
parasite genomes per host genome was also lower in vaccinated chickens at 6 dpi (P < 
0.001; Fig. 1B). In contrast, BWG was not significantly different at 6 dpi (Fig. 1C), although 
it was by 10 dpi (10).

In the present study, the level of E. tenella replication at 6 dpi was confirmed by 
quantification of Eimeria apicoplast 16S rDNA amplicon reads in NGS microbiome data 
from caecal tissue and contents (Fig. 1D and E). Comparison of all three E. tenella 
replication measures revealed a significant association with lesion score severity (qPCR 
ratio: r = 0.89, NGS 16S reads of caecal contents: r = 0.8, NGS 16S reads of caecal tissue: r = 
0.63; all P < 0.001; Fig. 1F). For comparison, 10 dpi unvaccinated and challenged chickens 

FIG 1 Summary of vaccine trial phenotypes assessed 6 days post-infection (dpi) with 15,000 sporulated Eimeria tenella oocysts. (A) Caecal lesion scores, 

(B) parasite load represented as parasite genomes per host genome, determined using qPCR, (C) body weight gain from 0 to 6 dpi, (D and E) parasite load 

represented by Eimeria apicoplast 16S rDNA sequence reads in caecal contents and tissue, (F) association between caecal lesion score and parasite load 

measures. Panels (A–C) reanalyzed by Soutter et al. (10). Groups UV-C: unvaccinated, challenged, UV-UC: unvaccinated, unchallenged, MV-C: mock vaccinated, 

challenged, V-C vaccinated, challenged.
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(UV-C10) considered to be recovering from infection also showed a significant reduction 
in gut pathology and Eimeria load compared to all infected subjects at 6 dpi (P < 0.001; 
Fig. 1A and E).

Gut pathology and parasite load correlate with changes in gut microbiota

The composition of enteric microbial populations can reflect the health status of 
microecosystems in the GI tract. We performed 16S rDNA amplicon sequencing from 
caecal contents and tissues collected from the same individuals to characterize gut 
microbiota composition, with no significant differences in beta diversity detected 
between sample types (caecal tissue compared to caecal contents; PERMANOVA test 
R2 = 0.026, P = 0.052) (Fig. S1A). Comparison between caecal contents and tissue found 
62.7% to 73.6% of microbiota composition to be shared (Fig. S1B). Microbial popula­
tions enriched in caecal contents included Lactobacillus mucosae, Lactobacillus salivarius, 
Paludicola psychrotolerans, Kineothrix alysoides, Anaerostipes butyraticus, and [Clostridium] 
polysaccharolyticum; while microbial populations of Anaerotruncus colihominis (KTU 13) 
and Flavonifractor plautii (KTU 14) were enriched in caecal tissues (i.e., UV-C, MV-C, and 
V-C) (Fig. S1C).

Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarity measurements 
showed that the caecal contents microbiota composition of unchallenged versus all 
challenged groups were distinct from each other (6 dpi) along the PCoA1 axis (31.15% 
of observed variation) (Fig. 2). A PERMANOVA test confirmed significant differences in 
microbiota (R2 = 0.33, P = 0.001) (Fig. 2A) and there were significant correlations with 
caecal lesion scores (|r| = 0.73, P < 0.001), parasite load in caecal tissues (qPCR ratio: |r| = 
0.76, P < 0.001) and caecal contents (NGS reads: |r| = 0.67, P < 0.001) (Fig. 2B through D).

On average a low alpha diversity index of microbial richness (observed KTUs) was 
found in all chickens across all groups (71.64 ± 14.21; Fig. 2E) compared to a previous 
study by Hay et al. (27) (493.13 ± 201.60, reanalyzed using the same pipeline used in the 
present study) (27). This disparity may be due to the requirement for broad-spectrum 
enrofloxacin treatment during this trial, a common feature of commercial production 
systems, with no effect on Shannon’s diversity index (Fig. 2F). Comparison between the 
groups revealed higher observed KTUs in all challenged groups 6 dpi compared to the 
unvaccinated, unchallenged group (UV-UC), although the difference was not statistically 
significant. The dominant phyla were Firmicutes, followed by Proteobacteria in all 
chickens (combined, accounting for more than 98%) (Fig. 2G); however, Proteobacteria 
were reduced in UV-UC chickens (4.83% compared to 13.5%/26.65%/22.36% in other 
groups). Actinobacteria were enriched in both mock and true vaccinated groups (1.55% 
and 1.35%, respectively), dominated by genus Bifidobacterium (1.50% and 1.30%, 
respectively). Since the lesion scores and Eimeria loads were significantly correlated with 
the PCoA1 axis of beta diversity, 36 associated taxa enriched in challenged chickens were 
identified by Pearson’s correlation analysis [|r| ≥ 0.4, false discovery rate (FDR) < 0.1], 
including Escherichia coli, Clostridium difficile, C. innocuum, and Proteus mirabilis (Fig. 2H).

Metabolomes reflect the molecular alterations of host physiology responses 
in health, infection, and recovery

Caecal tissue metabolomic profiling was performed for the same chickens as described 
above using samples collected in parallel with those used for microbiome sequencing 
analysis to characterize host physiological responses. An untargeted metabolomics 
approach was applied for screening metabolites within the tissues. Based on Euclidean 
distance measurements, PCA of caecal tissue metabolome profiles showed a similar 
pattern to the caecal microbiota with unchallenged and challenged individuals differen-
tiated along the PC1 axis (52.73% of observed variation) (Fig. 3). The recovering (UV-C10) 
group displayed a broad but intermediate metabolome profile to that of 6 dpi chal­
lenged chickens and uninfected chickens, and this group was also differentiated along 
the PC2 axis (9.57%). The values on the PC1 correlated with caecal lesion scores (|r| = 0.83, 
P < 0.001) and Eimeria loads (qPCR ratio: |r| = 0.73, P < 0.001; NGS reads of caecal 
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contents: |r| = 0.83, P < 0.001; NGS reads of caecal tissues: |r| = 0.68, P < 0.001) (Fig. 3B and 
C). Among 1,180 metabolites belonging to the 10 categories that were detected from all 
chickens (including partially characterized and uncharacterized; Fig. 3D), 954 metabolites 
were either negatively (606, non-infection-associated) or positively (348, infection-
associated) correlated with pathophysiology changes (lesion scores and Eimeria loads; 
significant negative correlation with PC1 in Fig. 3A by Pearson’s correlation analysis, FDR 
< 0.1; Fig. 3E). In more detail, xenobiotics, cofactors and vitamins, especially vitamin Bs, 
were characterized as non-infection-associated metabolites (Fig. S2A; Table S2); while 
lipids, especially the sphingolipids, nucleotides, and carbohydrates, were characterized 
as infection-associated metabolites (Fig. S2B; Table S2).

Multi-omics factor analysis reveals covariation patterns of disease status

Using MOFA, integration of parallel caecal tissue and content microbiomes with caecal 
tissue metabolome data showed concordant responses that associated with gut 
pathology and parasite load. Host-microbe intercorrelated features were assessed 
between microbial and metabolite features using Spearman’s correlation. A total of 151 
KTUs and 767 metabolites were significantly associated (FDR < 0.05), resulting in an 

FIG 2 Gut microbiota profiling and associations of gut pathology and parasite loads. (A) Principal coordinates analysis (based on Bray-Curtis distance) for 

beta diversity of gut microbiota composition (caecal contents) among four groups of chickens. (B) The correlation between microbiota composition and lesion 

scores. (C) and (D) The correlations between microbiota composition and parasite loads, (C) based on qPCR quantification of the ratio of Eimeria and host 

genes, (D) based on NGS reads of Eimeria apicoplast 16S rDNA. (E) Alpha diversity (observed KTUs) of four groups of chickens. (F) Alpha diversity (Shannon’s 

index) of four groups of chickens. (G) Relative abundance of gut microbiota composition at the phylum level. (H) Gut pathology and parasite load-associated 

microbes (Pearson’s r > 0.4 or <−0.4, FDR-adjusted P < 0.05) extracted from PCoA1 of panel (A). Groups UV-C: unvaccinated, challenged, UV-UC: unvaccinated, 

unchallenged, MV-C: mock vaccinated, challenged, V-C vaccinated, challenged.
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MOFA model that contained 15 representative factors. The factors were decomposed and 
ordered by the fraction of significant associations they contributed to the major varian­
ces (Fig. 4A). The first two MOFA factors explained the most variance that differentiated 
the unchallenged, challenged, and recovering groups on the MOFA scatter plot (Fig. 4B). 
In addition, covariate (phenotype) correlation analysis demonstrated that the first two 
MOFA factors were associated with the majority of the covariates (Fig. 4C), where factor 1 
(FA1) was particularly associated with covariates related to infection (r < −0.6) and factor 
2 (FA2) was associated with BWG (r = 0.56); associations not identified in correlations of 
single omics analyses.

Multi-omics networks can contextualize the multiple types of microbiome disruption 
associated with various biological molecules found in different health statuses (28). 
Additionally, a network’s hotspot molecular features (hubs and clusters) can highlight 
targets to be followed up. Here, we conducted network analyses downstream of MOFA to 
explore biomarkers that might be associated with anticoccidial vaccination. Network 
analyses for the MOFA factors showed sub-structures (clusters of intercorrelated features) 
that were enriched in each MOFA factor (Fig. 4D and E). Three clusters were identified 
from FA1 components; two were associated with Eimeria challenged chickens (including 
unvaccinated, vaccinated, and recovering groups) (FA1-C1 and C3 in Fig. 4D), while the 
third was associated exclusively with unchallenged chickens (FA1-C2 in Fig. 4D). 

FIG 3 Chicken caecal tissue metabolome profiling and associations of gut pathology and parasite loads. (A) Principal component analysis for chicken caecal 

tissue metabolome composition among five groups of chickens. (B) The correlation between metabolome composition and lesion scores. (C) The correlation 

between metabolome composition and parasite loads, based on NGS reads of Eimeria apicoplast 16S rDNA. (D) Compositions and categories of the metabolome 

of five groups of chickens. (E) Gut pathology and parasite load-associated metabolites (Pearson’s r > 0.4 or <−0.4, FDR-adjusted P < 0.05) extracted from PC1 of 

panel (A). Groups UV-C: unvaccinated, challenged, UV-UC: unvaccinated, unchallenged, MV-C: mock vaccinated, challenged, V-C vaccinated, challenged, UV-C10: 

unvaccinated, challenged, 10 days post-infection.
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Additionally, cluster 1 in the FA2 network demonstrated associations between unchal­
lenged/recovering groups and the 6 dpi challenged group (FA2-C1 in Fig. 4E). Clustered 
components from the FA1 and FA2 networks associated with non-challenge and 

FIG 4 MOFA model for all trial groups and downstream signature marker identification by network analysis. (A) Bar plots showing the fraction of significant 

associations between the features of each microbiome or metabolome modality and each factor. The stacked bars interpret whether the variance-explained 

values are driven by a strong change in a small number of features or by a moderate effect across a large range of features. (B) Scatterplot of factor 1 (x axis) 

versus factor 2 (y axis). Each dot represents a sample, colored by the trial group. (C) The correlation heatmap of MOFA factors and phenotypes (Eimeria.c: NGS 

read-based Eimeria load in caecal contents; Eimeria.t: NGS read-based Eimeria load in caecal tissues; qPCR: qPCR-based Eimeria load in caecal tissues; Infection: 

infection condition- infected or non-infected; Yeast: yeast vector exposure or not; Vaccination: vaccination condition- vaccinated or non-vaccinated). (D) and 

(E) Network analysis and visualization for the features from (D) factor 1 and (E) factor 2. The top 20% of hub centrality nodes were highlighted with black frames; 

the annotations of hub features are shown in Table S3. Thumbnail legends present the regions of subnetworks. Details of subnetworks from the MOFA model can 

be referred to in Fig. S3.
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recovery were enriched by vitamin B and derivatives (e.g., pyridoxine, riboflavin, and 
nicotinate derivatives), short-chain fatty acids (e.g., butyrate/isobutyrate and valerate), 
and short-chain fatty acid-producing bacteria (e.g., Caproicibacter fermentans and 
Ruminococcoides bili). Itaconate, an antipathogenic organic acid was enriched in 
recovering chickens. In contrast, uremic toxin (e.g., p-cresol sulfate), the long-chain fatty 
acids and derivatives [e.g., 14—18C fatty acids and glycerophospholipids (GPs), glycero­
phosphocholine (GPC), and phosphoethanolamine (PE) derivatives], metabolites of fatty 
acid metabolism (eicosenoylcarnitine and docosadienoylcarnitine), and gut pathogens 
(e.g., C. difficile and C. innocuum) and commensal bacteria (e.g, E. coli, Clostridium bolteae, 
and Fecalibacterium prausnitzii), were enriched in post-Eimeria challenged associated 
clusters of both networks (Fig. S3). Hub centrality scoring of the network identified 
exclusive key features (top 20% high hub centrality nodes). Cellulose/complex carbohy­
drate-degrading bacterium—K. alysoides, amino acid utilization bacterium—Agathobac­
ulum desmolans, cholate and its secondary bile acids product—ursodeoxycholate, and 
gut microbial producing isoflavone antioxidant—6-hydroxydaidzein were potential 
markers of healthy and recovered chickens' gut ecosystem; whereas C. innocuum 
reflected compromise of the gut barrier after infection (Table S3).

MOFA models discover potential signature markers of host response to 
challenge after vaccination

While highlighting the covariation patterns of disease status, the MOFA model con­
structed using data from all samples did not reveal factors specifically associated with 
unvaccinated-challenged and vaccinated-challenged (mock and true vaccines) chickens. 
A more focused MOFA model was performed on all 6 dpi challenged groups to identify 
signature markers after vaccination. In the second model, the first four MOFA factors 
contributed to the major variation of the data and the fraction of significant associations 
(Fig. 5A). Interestingly, the phenotypic and pathological covariates were more closely 
associated with FA4 and FA11 (e.g., lesion score severity was more associated with FA4 
than other FA; r = −0.57). Vaccine treatment conditions (Yeast: treating with yeast vectors 
or not; Vaccination: treating with the true vaccine or not) were negatively associated 
with FA4 and FA11, and the parasite load (qPCR ratio) was associated with both FAs 
(r = −0.59 and −0.37) (Fig. 5C). Comparison of FA4 and FA11 using a scatter plot 
demonstrated that FA4 clearly distinguished the treatment condition of yeast vectors 
between unvaccinated (UV-C) and vaccinated groups (MV-C and V-C). FA11 showed a 
different trend between the mock vaccine group (MV-C) and the true vaccine group (V-C) 
(Fig. 5B). Using network analysis, the signature features of various sphingolipids (e.g, 
sphingosine and sphingomyelin) and Ruminococcus lactaris were clustered from both 
FAs and enriched in most vaccinated subjects; whereas the long-chain fatty acids (e.g., 
linoleoyl-arachidonoyl-glycerol and oleoyl-oleoyl-glycerol) were enriched in unvaccina­
ted-unchallenged chickens (Fig. 5D and E; Fig. S4). In addition, the sphingolipids were 
also identified as key features of vaccination based on network hub centrality scoring 
(Table S4).

DISCUSSION

An experimental yeast-vectored anticoccidial vaccine has recently been described as a 
step towards improved control of Eimeria species such as E. tenella, which cause coccidio­
sis in chickens (10). Small-scale studies under commercial conditions found that vaccina­
tion could partially control the direct consequences of live parasite challenge, reducing 
parasite replication and its associated enteric pathology, while protecting performance 
(BWG and feed conversion ratio). In the present study, we have assessed the impact of 
vaccination on indirect consequences of Eimeria infection including microbial dysbiosis 
and metabolic disruption.

Using 16S rDNA amplicon sequencing from caecal contents and caecal tissue of 
experimentally vaccinated and challenged commercial Cobb500 chickens found lower 

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00947-24 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

0 
O

ct
ob

er
 2

02
4 

by
 1

94
.3

5.
12

2.
10

9.

https://doi.org/10.1128/msystems.00947-24


FIG 5 MOFA model for challenged 6 dpi chickens and downstream signature marker identification by network analysis. (A) Bar plots showing the fraction 

of significant associations between the features of each microbiome or metabolome modality and each factor. The stacked bars interpret whether the 

variance-explained values are driven by a strong change in a small number of features or by a moderate effect across a large range of features. (B) Scatterplot of 

factor 4 (x axis) versus factor 11 (y axis). Each dot represents a sample, colored by the trial group. (C) The correlation heatmap of MOFA factors and phenotypes 

(Eimeria.c: NGS read-based Eimeria load in caecal contents; Eimeria.t: NGS read-based Eimeria load in caecal tissues; qPCR: qPCR-based Eimeria load in caecal 

tissues; Yeast: yeast vector exposure or not; Vaccination: vaccination condition- vaccinated or non-vaccinated). (D) and (E) Network analysis and visualization for 

the features from (D) factor 4 and (E) factor 11. The top 20% of hub centrality nodes were highlighted with black frames; the annotations of hub features are 

shown in Table S4. Thumbnail legends present the regions of subnetworks. Details of subnetworks from the MOFA model can be referred to in Fig. S4.
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microbiota richness (observed KTUs) than in a recent farm study (27), likely due to a 
necessary enrofloxacin medication in the early rearing period to control an outbreak of 
colibacillosis. It is well described that antibiotic treatment influences microbiome 
composition and richness, often recovering to its normal composition after stopping the 
treatment (29, 30). While this treatment was unexpected, such necessary treatments are 
common under the field conditions adopted here and were identical across all treatment 
groups, permitting valid comparison with real-world relevance. Microbiota richness is 
also expected to be higher in populations of mixed-breed chickens reared in the field 
under varied husbandry regimes than under the controlled conditions used in the 
present study. Comparison between caecal contents and tissues found no significant 
differences in alpha diversity (P = 0.87) or beta diversity (P = 0.052) (Fig. S1). Only 
Anaerotruncus (A.) colihominis and Flavonifractor (F.) plautii were consistently enriched in 
caecal tissue samples across multiple groups (UV-UC, MV-C, and V-C), indicating their 
association with the intestinal mucosal environment. A. colihominis, originally isolated 
from mouse colonic mucosa by the Leibniz Institute DSMZ, has been detected in the 
intestinal lumen and stool samples of patients with bacteraemia and colorectal cancer, 
suggesting a potential broader role in gut dysbiosis and pathology (31, 32). Similarly, F. 
plautii, known for its ability to degrade flavonoids and potentially mucins, was isolated 
by Levine et al. from mammalian intestinal mucosa (33). Its presence in these tissue 
samples underscores its importance in gut health and disease (33, 34). Based on our 
findings, investigation of caecal contents alone appears to be sufficient to investigate 
total gut microbiota because these reflect the primary condition of the intestinal 
ecosystem.

Eimeria infection is known to predispose chickens to diseases such as necrotic 
enteritis, caused by C. perfringens (35), and can disrupt enteric microbial populations 
leading to dysbiosis (21). We anticipated that beta diversity, but not alpha diver­
sity, would change following Eimeria challenge. However, although average richness 
(observed KTUs) was lower in unchallenged chickens, the difference was not statistically 
significant (Fig. 2). Comparison of bacterial abundance between infected and non-infec­
ted chickens revealed increased Gammaproteobacteria and potentially pathogenic 
Clostridia in Eimeria-challenged chickens. Common gastrointestinal pathogens, including 
Escherichia (E.) coli, Clostridium (C.) difficile, Enterococcus (E.) cecorum, P. mirabilis, and 
Clostridium (C.) innocuum, were also in higher abundance (Fig. 2H) suggesting significant 
dysbiosis occurred following Eimeria challenge infection. It is notable that some strains 
of E. caecorum have been reported to cause high morbidity and mortality in broiler 
chickens (36). Additionally, C. difficile and C. innocuum can cause antibiotic-associated 
diarrhea and have shown vancomycin resistance (37, 38), suggesting that a compro­
mised gut environment may facilitate colonization by antibiotic-resistant strains; this 
condition mirrors the mechanism of human pseudomembranous colitis, which arises due 
to the overgrowth of C. difficile following extensive antibiotic usage. Eimeria infection can 
alter the gut microenvironment by increasing intestinal permeability and inflammation 
(39), thereby interacting bidirectionally with the gut microbiota. Consequences of enteric 
dysbiosis include immune dysregulation causing gut-related disorders such as allergies, 
inflammatory bowel disease and autoimmune disorders (40–42). Thus, Eimeria challenge 
is likely to activate a synergistic response between the host’s physiology and the 
commensal gut microbiota. Intestinal infections can decrease oxygen levels and lead to 
chronic tissue and mucosal hypoxia with dysregulation of activation of hypoxia-inducible 
factors and NF-κB, exacerbating inflammation and injury of intestinal tissues (43, 44). 
The metabolic environment of the mucosa is also altered during inflammation since the 
Enterobacteriaceae require terminal electron acceptors from the mucosa for anaerobic 
respiration and blooming (45, 46). Inflammatory cells release ROS and RNS, forming NO3

− 

as a terminal electron acceptor for Gammaproteobacteria growth via denitrification (45, 
47–53).

In all Eimeria-challenged groups (UV-C, MV-C, and V-C), the gut microbiota compo­
sition was similar (Fig. 2A). However, yeast treatment groups (MV-C and V-C) showed 
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a significant increase in E. coli abundance, nearly double in UV-C and over six times 
higher in UV-UC. While harmful E. coli may increase due to infection, it is possible that 
some protective E. coli strains that can stimulate an innate immune mechanism (54) and 
produce vitamins (55, 56) colonize after the reversion of dysbiosis. Notably, Bifidobacte­
rium, a common lactic acid-producing probiotic, was present in both yeast treatment 
groups, irrespective of Eimeria antigen expression. In addition, Lactobacillales family 
bacteria (Enterococcus, Lactobacillus, and Pediococcus) were enriched in both non-infec­
ted and yeast treatment groups, with Lactobacillus and Pediococcus being particularly 
higher in non-infected groups. This enrichment suggests a beneficial modulation of the 
gut microbiota. Yeasts and lactic acid-producing bacteria, often found together in nature 
(57), decrease pH value during fermentation creating an unfavorable environment for 
some pathogens (58, 59).

We used a multi-omics integrative tool, MOFA, to infer how the caecal metabolome 
interacts with gut microbes under a range of vaccination and Eimeria infection condi­
tions. MOFA modeling confirmed that metabolites involved in fatty acid metabolism and 
β-oxidation pathways were altered by Eimeria infection (23). Inflammation and oxidative 
stress induced by Eimeria invasion and subsequent pathology increase the demand 
for metabolites involved in fatty acid metabolism (60). The model found that carni­
tine derivatives such as eicosenolycarnitine and docosadienolycarnitine, intermediate 
metabolites involved in fatty acid metabolism, were enriched in the Eimeria challenged 
groups (challenge groups compared to non-challenge and recovering groups; factor 2 
of MOFA model 1). In addition, p-cresol sulfate (pCS), a uremic toxin formed by gut 
microbial fermentation of tyrosine (61, 62), was also enriched in all challenged groups, 
especially in unvaccinated, challenged chickens (factor 1 of MOFA model 1). The main 
producer of pCS, C. difficile, a significant cause of diarrhea during microbial ecosystem 
collapse, was also identified (factor 1 of MOFA model 1) (63, 64). These findings link both 
layers of omics and prove evidence that Eimeria infection causes dysbiosis.

Since the first MOFA model (the full model with all groups of the trial) could 
not distinguish an effect of vaccination among the challenged, non-challenged, and 
recovering groups, a second MOFA model was used to explore latent grouping among 
vaccinated and non-vaccinated chickens. We found sphingolipids, including sphingosine, 
sphingomyelin, and sphingoinositol, were significant factors associated with vaccination. 
Sphingolipids are required in cell membrane structures of eukaryotes (especially the 
Schwann’s cell, which surrounds the neuron axon) and some prokaryotes (65), as well 
as essential signaling molecules of inflammatory, immunity, cell autophagy, growth, 
and survival regulations (65–69). Brown et al. (70) indicated that the microbe-derived 
sphingolipids (especially from Bacteroides) are negatively correlated with gastrointesti­
nal inflammation (i.e., inflammatory bowel disease) and maintaining homeostasis and 
symbiosis of gut microbiota (70). This finding supports the efficacy of the yeast-based 
oral anti-coccidiosis vaccine and indicates that the vaccine can alter the symbiosis 
status of gut microbiota. However, only a few reads of Bacteroides were detected from 
yeast-based vaccine-treated samples and non-Eimeria-challenged samples (including 
from caecal tissues and contents), possibly due to the early antibiotic treatment of all 
study subjects. It implies that the microbial anti-inflammatory sphingolipids could be 
produced via other microbial species in the chicken gut microbiota, then act as a signal 
of anti-coccidiosis for further applications.

In conclusion, using MOFA machine learning to integrate evaluation of potential 
interactions between the enteric microbiome and host-microbe interacted metabolism 
provided a mechanistic insight into the effects of anticoccidial vaccination and Eimeria 
challenge. In the present study, we identified Gamma-proteobacteria, p-cresol sulfate, 
Bifidobacterium, carnitine-derived metabolites, and sphingolipids as host-microbe-asso­
ciated biomarkers that vary between healthy, infected, vaccinated, and/or recovering 
chickens, providing insights into potential strategies for controlling, treating, and 
preventing coccidiosis. As we look to the future, the findings of this study are poised to 
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contribute to the advancement of precision agriculture, particularly in enhancing poultry 
health management and the development of novel interventions against coccidiosis.

MATERIALS AND METHODS

Study animals, metadata measurement, and study design

Cobb500 broiler chickens were purchased from P. D. Hook (Hatcheries) Ltd. (Cote, UK) at 
day of hatch and reared under commercial conditions. All chickens received enrofloxacin 
(Baytril, Bayer, Leverkusen, Germany, 10 mg kg−1) from days 16 to 18 of the trial due to 
an outbreak of colibacillosis. All groups received the same treatment, an intervention 
common in commercial production systems. Feeding and vaccination treatments were 
as described in a previous study (Study 4 in reference (10)). Briefly, four groups of ten 
chickens were sampled from a larger vaccination study 6 days post-E. tenella challenge 
including (1) unvaccinated, challenged (UV-C) (2), unvaccinated, unchallenged (UV-UC) 
(3), mock vaccinated, challenged (MV-C), and (4) vaccinated, challenged (V-C) groups. A 
fifth group of eight unvaccinated, challenged chickens were sampled 10 days post-chal­
lenge (UV-C10; Table S1). Mock and experimental vaccines were administered by oral 
inoculation in 100 µL phosphate-buffered saline every 3–4 days from day 7 of age 
(five doses per chicken in total). Group 3 (MV-C) was vaccinated using a mock vaccine 
including S. cerevisiae EBY100 strain (Invitrogen, Thermofisher Scientific, Waltham, MA, 
USA) containing the empty yeast display plasmid vector pYD1 (Invitrogen). Group 4 (V-C) 
was vaccinated at the same time points by oral inoculation of an experimental trivalent 
formulation of S. cerevisiae-vectored recombinant vaccine using pYD1 to separately 
express each of three E. tenella antigens including EtAMA1 ectodomain (11), EtIMP1 (12), 
and EtMIC3 (13). The vaccine design and administration procedures were as described 
previously (10). Groups 1, 3, 4, and 5 were challenged by oral inoculation with 15,000 
sporulated E. tenella Houghton strain oocysts at 21 days of age. Challenge oocysts 
were prepared and inoculated following established protocols (71). Caeca (paired) were 
collected immediately post-mortem at 6 or 10 dpi (Groups 1–4, and 5, respectively). 
The severity of infection was assessed using the Johnson and Reid scoring system (72). 
Overall production performance was defined by BWG between 0 and 6 dpi. Parasite 
replication was measured using quantitative PCR for parasite genomes per host genome 
(10); and Eimeria apicoplast 16S rDNA, identified by the SILVA database (v138 database 
collection ID: CBUU010051530.238.1796), was captured by NGS sequencing and used to 
quantify parasite loads.

DNA extraction and 16S rDNA amplicon sequencing

Bacterial genomic DNA was extracted separately from caecal tissue (~100 mg) and caecal 
contents (~200  mg) using a QIAamp Fast DNA Stool Mini kit (QIAGEN, Valencia, CA, USA) 
following the manufacturer’s pathogen detection protocol. 16S rDNA amplicon library 
preparation followed the Illumina 16S Metagenomic Sequencing Library Preparation 
guidelines (73). The 16SrDNA V3–V4 hypervariable regions were amplified by PCR 
with the adapter overhang primers 341F (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGAC
AGC CCTACGGGNGGCWGCAG-3′) and 805R (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGA
GACAG GACTACHVGGGTATCTAATCC-3′) for 25 cycles. Indices and Illumina sequencing 
adapters were attached using the Nextera XT Index Kit with eight cycles of a second 
amplification reaction. The final PCR products were purified using AMPure XP beads 
(Beckman Coulter, Brea, CA, USA). The amplicon DNA concentration was measured using 
Qubit dsDNA HS and BR Assay Kits (Thermo Fisher Scientific, Waltham, MA, USA). Library 
quality was determined using the Agilent Technologies 2100 Bioanalyzer system with 
a DNA-1000 chip. Eighty-eight samples representing caecal tissues from all chickens in 
Groups 1–5 (n = 48) and caecal contents from all chickens in Groups 1–4 (n = 40) were 
pooled with equal molality. The 16S rDNA amplicon libraries were sequenced using 
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a 301-bp paired-end (301 bp × 2) approach on an Illumina MiSeq platform using V3 
chemistry.

Bioinformatic processing and microbiota analyses

The Illumina MiSeq platform generated a total of 22,525,182 paired-end sequences. 
Sequences were cleaned by sequence length ≥300 bp using Trimmomatic (74). The 16S 
rDNA amplicon sequences were processed using the Quantitative Insights Into Microbial 
Ecology 2 (QIIME 2) pipeline (version 2019.10) (75). Primer sequences were removed by 
Cutadapt (version 1.15) (76). Trimmed sequences were truncated at 240 bp (forward) 
and 210 (reverse) and denoised using the DADA2 algorithm (77). Amplicon sequence 
variants (ASVs) were obtained via the denoising process with quality filtering and 
chimera removal. A k-mer based re-clustering algorithm “KTU” (78) was subsequently 
applied to assemble ASVs into optimal biological taxonomic units (KTUs). KTUs taxonomy 
was assigned by comparison with the SILVA SSU reference nr99 (v138) (79, 80) and 
NCBI 16S RefSeq (retrieved 10 February 2022) databases using the taxonomy function 
of the KTU R-package. Eukaryotic organelle 16S sequences (identified as Eimeria) were 
extracted and used for supplementary parasite load quantification; non-prokaryotic and 
unassigned KTUs were removed from the microbiota data set. The 309 KTU microbiota 
data set was rarefied at the minimum read counts among samples (10,034 reads) after 
removing twelve samples with shallow sequence depth (<10,000 reads).

Microbiota analyses were conducted and visualized using the Microbiome Analysis R 
code (MARco) (81), Community Ecology “vegan” (82), and Pretty Heatmap (pheatmap) 
(83) packages in R (version 4.0.1) (84). The ANOVA test with Tukey HSD post hoc multiple 
comparison test or Kruskal-Wallis test with Dunn’s post hoc multiple comparison test 
were used for parametric and non-parametric statistical analyses of group comparisons 
with a significance level of α = 0.05, and the P values were adjusted with an FDR. Alpha 
diversity indices were estimated by richness. Beta diversity of microbial communities was 
measured by Bray-Curtis dissimilarity using PCoA, and heterogeneity was tested using 
ADONIS and ANOSIM tests.

Metabolome profiling

Untargeted metabolome profiling of caecal tissues was performed by Metabolon (NC, 
USA) using their vendor protocol. Briefly, all samples were deproteinized by dissociating 
small molecules bound to protein or trapped in the precipitated protein matrix. To 
recover chemically diverse metabolites, methanol was used for protein precipitation 
under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000), followed by centrifuga­
tion. The extract was aliquoted into five fractions: two for analysis by separate reverse 
phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), 
one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by 
HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved as backup. 
Samples were placed briefly on a TurboVap (Zymark) to remove the organic solvent. The 
sample extracts were stored overnight under nitrogen before preparation for analysis.

All methods used Waters ACQUITY ultra-performance liquid chromatography (UPLC) 
and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 
interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass 
analyzer operated at 35,000 mass resolution. Each sample extract was dried then 
reconstituted in solvents compatible with each of the four methods. Each reconstitu­
tion solvent contained a series of standards at fixed concentrations to ensure injection 
and chromatographic consistency. One aliquot was analyzed using acidic positive ion 
conditions, chromatographically optimized for more hydrophilic compounds. The extract 
was gradient eluted from a C18 column (Waters UPLC BEH C18—2.1 × 100 mm2, 1.7 µm) 
using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% 
formic acid (FA). Another aliquot was also analyzed using acidic positive ion conditions; 
however, it was chromatographically optimized for more hydrophobic compounds. The 
extract was gradient eluted from the same aforementioned C18 column using methanol, 
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acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher 
organic content. Another aliquot was analyzed using basic negative ion optimized 
conditions using a separate dedicated C18 column. The basic extracts were gradient 
eluted from the column using methanol and water, however with 6.5 mM ammonium 
bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization following 
elution from a HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm2, 1.7 µm) using a 
gradient consisting of water and acetonitrile with 10 mM ammonium formate, pH 10.8. 
The MS analysis alternated between MS and data-dependent MSn scans using dynamic 
exclusion. The scan range varied slightly between methods, but covered 70–1,000 m/z.

Raw data were extracted, peak-identified and QC processed by Metabolon’s in-house 
systems. Compounds were identified by comparison to library entries of purified 
standards or recurrent unknown entities. The in-house library was built and maintained 
by Metabolon, and contained more than 3,300 commercially available purified standard 
compounds with the information of retention time/index (RI), mass-to-charge ratio (m/z), 
and chromatographic data (including MS/MS spectral data). Compound identification 
was based on the following criteria: retention index within a narrow RI window of the 
proposed identification, accurate mass match to the library ±10 ppm, and the MS/MS 
forward and reverse scores between the experimental data and authentic standards. The 
identified compounds were categorized into 10 groups (amino acid, carbohydrate, lipid, 
etc.), which were labeled as super pathways in Metabolon’s data report.

A subset of 1,180 metabolites was detected from the untargeted metabolomics 
screen. Each metabolite’s peak area (i.e. total ion counts, integrated area under the 
curve) was median-scaled to normalize. The missing values were then imputed with the 
observed minimum of each metabolite. Since the metabolomic data were typically close 
to log-normal distribution, the normalized-imputed data were transformed using the 
natural log for subsequent analyses.

MOFA model for microbiota and metabolome integrative analysis

MOFA model fittings were performed to integrate multi-omics data modalities based 
on an unsupervised machine learning model formulated in a probabilistic Bayesian 
framework. The 16S rDNA amplicons of caecal tissue and content, and host caecal 
metabolome were the separate data modalities in this study. In order to make all 
omics data comparable, the amplicon abundance was centered log-ratio transformed 
using the “clr” function of the compositions R-package. Spearman’s correlation (FDR 
< 0.05) was implemented to select associated features from the omics data sets (85). 
Downstream characterization was performed by variance decomposition, detecting the 
fraction of significant associations between the features and each factor using Pearson’s 
correlation (FDR < 0.1), and correlation of phenotype covariates. A sub-grouped MOFA 
model fitting was performed on all 6 dpi challenged groups. A network analysis for 
identifying sub-structures of MOFA factors was performed with the R package igraph47 
(86). An adjacency matrix based on Spearman’s correlation coefficients of intercorrelated 
features was constructed from a MOFA factor of interest; these coefficients were also 
used for assessing length of edges on the network. The latter was conducted with the 
fast greedy modularity optimization algorithm (87) to identify clusters in the network. 
The node centrality scores of the network were calculated using the Kleinberg’s hub 
centrality scores, which were based on the principal eigenvector of the adjacency matrix 
(88).
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