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Abstract
Human mobility is strongly associated with the spread of SARS-CoV-2 via air travel on an international scale and with population 
mixing and the number of people moving between locations on a local scale. However, these conclusions are drawn mostly from 
observations in the context of the global north where international and domestic connectivity is heavily influenced by the air travel 
network; scenarios where land-based mobility can also dominate viral spread remain understudied. Furthermore, research on the 
effects of nonpharmaceutical interventions (NPIs) has mostly focused on national- or regional-scale implementations, leaving gaps 
in our understanding of the potential benefits of implementing NPIs at higher granularity. Here, we use Chile as a model to explore 
the role of human mobility on disease spread within the global south; the country implemented a systematic genomic surveillance 
program and NPIs at a very high spatial granularity. We combine viral genomic data, anonymized human mobility data from 
mobile phones and official records of international travelers entering the country to characterize the routes of importation of 
different variants, the relative contributions of airport and land border importations, and the real-time impact of the country’s 
mobility network on the diffusion of SARS-CoV-2. The introduction of variants which are dominant in neighboring countries (and 
not detected through airport genomic surveillance) is predicted by land border crossings and not by air travelers, and the strength 
of connectivity between comunas (Chile’s lowest administrative divisions) predicts the time of arrival of imported lineages to new 
locations. A higher stringency of local NPIs was also associated with fewer domestic viral importations. Our analysis sheds light on 
the drivers of emerging respiratory infectious disease spread outside of air travel and on the consequences of disrupting regular 
movement patterns at lower spatial scales.
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Significance Statement

Global preparedness for pandemic threats requires an understanding of the global variations of spatiotemporal transmission dynam
ics. Regional differences are important because the local context sets the conditions for the unfolding of local epidemics, which in turn 
affect transmission dynamics at a broader scale. Knowledge gaps from the SARS-CoV-2 pandemic remain for regions like South 
America, where distinct sets of viral variants emerged and spread from late 2020 onwards, and where changes in human behavior 
resulted in epidemics which differed from those observed in other regions. Our interdisciplinary analysis of the SARS-CoV-2 epidemic 
in Chile provides insights into the spatiotemporal trends of viral diffusion in the region which shed light on the drivers that can in
fluence future epidemic waves and pandemics.

Introduction
The epidemic dynamics of SARS-CoV-2 are context-dependent. 
Intensity of transmission has been shown to vary greatly due to a 
combination of factors related to population mixing, international 
travel, socioeconomic indicators, and SARS-CoV-2 lineage compos
ition (1–3). The emergence of novel variants of interest (VOIs) and 
variants of concern (VOCs) was typically associated with epidemic 
waves in the country of their first report and later caused epidemics 
either regionally (Gamma and Beta in Brazil and South Africa, re
spectively) or globally (Alpha, Delta, and Omicron in England, 
India, and South Africa, respectively; (1, 4–7)).

During the emergence of Gamma, Beta, and Alpha in late 2020, 
the likelihood of a variant being detected in a country could be 
predicted by the number of passengers arriving from the countries 
reporting initial outbreaks (8). During that time, international and 
local travel was still restricted compared with prepandemic levels 
(9). Studies have shown how increased rates of local mixing im
pacted SARS-CoV-2 growth rates and total numbers of cases (10, 
11) and suggest that different types of human mobility contrib
uted to epidemic spread (12, 13).

Despite these general insights, the transmission dynamics of 
multiple variants in Latin America remain understudied and it 
is still unknown why some variants spread in this region and 
others did not. Multiple factors likely contributed to SARS-CoV-2 
lineage composition (14), including high transmission rates during 
the times when some variants emerged: the Gamma variant in the 
Brazilian Amazon (5), the Lambda variant in Peru and Chile (15), 
and the Mu variant in Colombia (16, 17). Various other lineages 
not designated as VOIs or VOCs in regions like Mexico (18) and 
the United States (e.g. Iota and Epsilon (19–21) were also detected 
in the continent but did not reach high frequencies).

Here, we analyze 787 SARS-CoV-2 genomes collected via dedi
cated airport genomic surveillance at Santiago de Chile Airport 
(SCL) and 7,957 genomes generated through community genomic 
surveillance (22, 23). These data are combined with human mobil
ity data from mobile phones (covering 24.3% (24) of Chile’s mobile 
phone subscribers) and records of international arrivals into the 
country (both airport arrivals and total land border crossings dur
ing 2021) to explore how international arrivals, airport testing, and 
local interventions (implemented at the lowest administrative di
visions in the country, comunas) impacted the transmission dy
namics of SARS-CoV-2 lineages in Chile during 2020–2021. We 
also assess how Chile’s mobility network predicts viral spread fol
lowing new importations. While similar analyses have been per
formed for other locations and contexts, Chile provides a 
distinct scenario to study these phenomena. Its genomic surveil
lance program at the largest international airport in the country 
(that received the vast majority of international travelers which 
were all tested upon arrival during 2021), combined with its net
work of land international ports of entry across its large border 
with Argentina (and smaller borders with Bolivia and Peru), 

results in an ideal scenario to evaluate the routes by which indi
vidual variants were imported into the country. Also, the highly 
localized application of nonpharmaceutical interventions (NPIs) 
during the pandemic (25–28) was a unique phenomenon which 
has not been evaluated in its efficacy in limiting the geographic 
spread of SARS-CoV-2.

The SARS-CoV-2 landscape in Chile and South 
America in 2021
Different SARS-CoV-2 variants emerged in South America during 
late 2020 and early 2021 (29). The earliest VOC described in South 
America was the Gamma variant, which emerged in Manaus, 
Brazil (5), and quickly spread to the southern half of the continent, 
into Argentina, Chile, Uruguay, Bolivia, and Paraguay (Fig. 1A). 
Simultaneously, the Lambda variant emerged and rapidly in
creased in frequency in Peru and Chile, while the Mu variant ap
peared later, around April 2021, in Colombia, Ecuador, and 
Venezuela (Fig. 1A). The epidemiological trends across different 
countries during this time suggest that these emerging variants 
drove national epidemic peaks, as increases in the number of cases 
followed increases in the prevalence of each variant between 
February and May 2021 across the region. Further epidemic peaks 
followed in June and July, which might have been driven by viral 
lineage replacement caused by regional movements of various 
South American variants or by the importation of the Delta variant, 
which swept across the world from spring 2021 onwards (Fig. 1A). 
Variants that became dominant in some other regions of the world, 
like Alpha and Beta, did not dominate in South America (Fig. S1).

These variant dynamics across other countries and their 
connectivity to Chile likely played a role on the country’s 
SARS-CoV-2 epidemic trends (Fig. 1B–D). Data on monthly land bor
der crossings and international airport arrivals show that both Peru 
and Argentina were important contributors to the total incoming 
travelers to Chile during 2021, albeit with different trends; while 
Peru accounted for the majority of air travelers arriving every 
month via SCL (up to 22.7% of all air passengers per month, 
Fig. 1B), more total travelers arrived from Argentina through land 
travel (14 land border crossings with Chile were operationally ac
tive during 2021, which recorded between 67 and 100% of all incom
ing travelers from Argentina into the country each month; Fig. 1B). 
We note that travelers from Argentina increased considerably from 
May 2021 onwards possibly reducing the impact of air travel re
strictions in the flow of people from that country during that 
time (specifically May, June, and July 2021; Fig. 1B).

During the study period between November 2020 and 
October 2021, Chile experienced three epidemic waves, peaking 
in February, April, and July, respectively. Each wave was fol
lowed by periods during which individual comunas enacted 
lockdowns of different stringency (i.e. the degree to which peo
ple could move freely; Supporting Text) and were implemented 
as a response to the changing epidemic trends. This resulted in 
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a fluctuation of the number of comunas and total people under 
restrictions over time (Fig. 1C).

International importations of viral lineages 
depend on country-level prevalence and human 
mobility
Chile implemented separate genomic surveillance programs for 
incoming international travelers at SCL and within the commu
nity. The proportions of different variants in both datasets show 
that for Alpha, Lambda, Mu, and Delta, airport detections pre
ceded the detection of these variants in the community by 6, 4, 
5, and 2 weeks, respectively. Gamma, however, was rarely 

observed using data from airport surveillance yet consistently ex
ceeded 25% of sequences from cases sampled in the community 
from 2021 April 25 until the end of August, when Delta started 
to replace all other lineages (Fig. 1D).

From these observations, we hypothesize that variants like 
Gamma were imported to Chile through different pathways other 
than international air travel. We performed phylogenetic analysis 
of virus genomic data from all five variants to map the number 
and timing of importations in Chile between late 2020 and through
out 2021 and found frequent and sustained importations across the 
study period. Alpha and Lambda importations peaked simultan
eously around April, while Gamma saw sustained importations be
tween May and August 2021. Mu had a peak in importations around 

A

B

C

D

Fig. 1. SARS-CoV-2 in Chile and South America during 2021. A) Relative frequency of four significant VOIs/VOCs in South American countries, shown as 
the number of sequences from each variant relative to the total genomic surveillance output from each country over the specified time period. B) Total 
volume of passengers from South American countries arriving in Chile via the Santiago de Chile International Airport (SCL) and through land border 
crossings from neighboring countries during 2021. Percentages under the upper panel show the proportion of all arrivals that come from South American 
countries vs. the rest of the world. C) Epidemiological COVID-19 trends during 2021 showing the total number of cases reported in the country, and the 
number of comunas and people in the country placed under lockdown over time; the latter consider comunas under the highest lockdown tier, full 
lockdown, which restricted mobility every day of the week within the comuna. D) Proportions of VOIs and VOCs detected in Chile during 2021 under their 
two surveillance schemes, community surveillance (top) and airport surveillance of international travelers arriving at SCL (bottom).
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July, followed by large numbers of Delta importations between 
August and October (Fig. 2A). Phylodynamic analysis of each vari
ant reveals an estimated ∼648 independent introductions (exclud
ing introductions of all other non-VOI/VOC viral lineages). For 
Delta, we detect the highest number of importations (median 336 
importations; 95% HPD: 327–344), considerably higher than for 

Lambda (median 111 importations; 95% HPD: 95–124), Mu (median 
86 importations; 95% HPD: 79–92), Gamma (median 74 importa
tions; 95% HPD: 64–83), and Alpha (median 41 importations; 95% 
HPD: 35–43; Fig. 2B). These estimates are likely affected by sampling 
intensity heterogeneities across countries and by the limited pro
portion of sampled cases in Chile, which also exhibit local sampling 

A B

C D

Fig. 2. Viral importation dynamics and ports of entry. A) Trends in inferred viral importations over time. Smoothed density estimates of the numbers of 
importations per variant over time plotted by the TMRCA of individual TLs. B) Posterior probability densities of the inferred number of viral importations 
per variant estimated through Bayesian phylogeographic analysis. C) Time series for the EII indices from selected states (for USA and Brazil—described in 
each panel) and countries. EIIs are estimated weekly for each variant and country; solid lines with circles show EIIs based on air travel volume (aEII), and 
dashed lines with squares show EIIs based on land border crossings (lEII). D) Posterior probability densities of the inferred number of importations 
stratified by importation route per variant. “International to Airport” shows estimated transitions from international location nodes to SCL airport nodes; 
“Airport to Community” shows estimated transitions from international location nodes to SCL airport nodes to Chile nodes detected through community 
surveillance; “International to Community” shows estimated transitions from international location nodes to Chile nodes detected through community 
surveillance.
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variation across space and time. We note a general trend whereby 
an increasing proportion of cases were sequenced coincided with 
declining numbers of cases (Fig. S2). We accounted for these poten
tial biases by using a mobility-informed subsampling approach 
that considers human movements from international destinations 
into Chile (see Materials and methods and (18)).

An estimated 43% of introductions led to detectable onward 
transmission in Chile, hereafter called “transmission lineages” 
(TLs). Across variants, only for Gamma and Lambda that more 
than 50% of viral introductions resulted in onward local transmis
sion (Fig. S3). As with previous studies, the size distribution of 
these TLs is heavily skewed, with a small portion of importations 
leading to large TLs, while the vast majority resulted in limited de
tectable onward transmission (Fig. S4); this size distribution might 
be affected by the study period cutoff date, as the persistence of 
TLs over time is right-censored (Fig. S5). The median number of se
quences in a TL tends to be higher as the numbers of cases during 
the time of the importation was lower, although this pattern is not 
observable for Mu and for Gamma (Fig. S3).

Because phylogenetic inferences are influenced by sampling 
biases and model specification, we use independent datasets to 
correlate estimates made from genomic data. Previous studies 

have shown that the number of international travelers coming 
into a territory can be used to help infer the expected number of 
SARS-CoV-2 case introductions (8, 30). We calculated an estimated 
importation intensity index (EII) based on the estimated cases for 
each variant in a potential source country and the total movements 
from that country into Chile. We used a Granger causality (GC) test 
to ask whether EIIs can “forecast” the inferred importations of each 
variant over time (see Materials and methods). We found that the 
weekly number of viral importations inferred from genomic data 
followed the EII for each variant (Table 1). Interestingly, Gamma in
troductions are best predicted by an EII that only includes land- 
based border crossings (lEII), while the remaining four variants 
are predicted by an EII based on air-based human movements 
(aEII) rather than land border crossings (Table 1). These results 
may explain why Gamma was rarely detected during airport gen
omic surveillance.

Airport testing and genomic surveillance were implemented as 
a public health measure and were combined with requirements 
for returning travelers of self-isolation following a positive test re
sult (Supporting Text). Therefore, this surveillance scheme aimed 
to minimize and ideally contain transmission from infected in
coming travelers. Its effectiveness depends on the sensitivity 

Table 1. GC test results between phylogenetically inferred viral imports and EII indices for both air (aEII) and land (lEII) mobility 
components.

VOC Source location aEII lEII

Lag (model support) F statistic P value Lag (model support) F statistic P value

Alpha Florida (USA) 12 (AIC = −6.74) 10.65 0.001 — — —
France 3 (SC = −2.65) 7.47 0.0005 — — —
Spain 12 (AIC = −6.83) 1.77 0.21 — — —
Argentina 12 (AIC = −9.89) 7.42 0.001 1 (SC = −2.24) 0.04 0.84
Boliviaa — — — — — —
Peru 2 (SC = −5.84) 8.95 0.000594 1 (SC = −8.53) 14.83 0.0004
Combinedb 12 (AIC = 3.42) 20.98 0.0001 1 (SC = −2.24) 0.07 0.79

Gamma Rio de Janeiro (BRA) 6 (SC = −4.29) 0.39 0.88 — — —
Santa Catarina (BRA) 11 (SC = −14.99 1.07 0.46 — — —
Sao Paulo (BRA) 1 (SC = 0.47) 0.03 0.86 — — —
Colombia 12 (SC = −3.31) 1.00 0.52 — — —
Argentina 1 (SC = −3.62) 3.50 0.07 1 (SC = 1.63) 11.14 0.002
Bolivia 1 (SC = −6.05) 0.44 0.51 1 (SC = 0.52) 3.61 0.06
Peru 1 (SC = −1.19) 0.17 0.68 1 (SC = −3.91) 5.75 0.02
Combinedb 1 (SC = 8.36) 0.03 0.86 1 (SC = 2.29) 9.80 0.003

Lambda Argentina 1 (SC = −4.36) 1.98 0.17 1 (SC = 1.39) 0.009 0.92
Bolivia 1 (SC = −11.22) 0.53 0.47 1 (SC = −3.02) 0.04 0.85
Peru 10 (SC = −1.95) 3.84 0.01 1 (SC = −2.84) 53.21 4.24E-09
Combinedb 10 (SC = 5.21) 3.68 0.01 1 (SC = 1.42) 0.64 0.43

Mu Colombia 1 (SC = 0.52) 7.04 0.01 — — —
Argentina 1 (SC = −1.11) 0.17 0.68 1 (SC = −4.77) 1.19 0.28
Bolivia 2 (SC = −7.25) 1.00 0.38 2 (SC = −0.64) 1.57 0.22
Peru 12 (SC = −7.80) 5.08 0.006 10 (SC = −9.39) 3.27 0.02
Combinedb 1 (SC = 7.54) 7.50 0.009 2 (SC = −0.61) 1.82 0.18

Delta Sao Paulo (BRA) 12 (SC = −16.32) 1459.4 5.47E-12 — — —
Florida (USA) 12 (SC = −8.71) 321.79 2.28E-09 — — —
Georgia (USA) 12 (SC = −15.77) 873.46 4.25E-11 — — —
New York (USA) 12 (SC = −54.78) 9.93E + 15 2.20E-16 — — —
Texas (USA) 12 (SC = −16.01) 3553.6 1.56E-13 — — —
France 12 (SC = −89.96) 122.5 1.06E-07 — — —
Netherlands 12 (SC = −8.89) 449.03 6.05E-10 — — —
Spain 12 (SC = −7.68) 188.35 1.92E-08 — — —
Argentina 12 (SC = −6.04) 2.32 1.20E-01 12 (SC = −3.71) 102.46 1.71E-09
Bolivia 9 (SC = −6.71) 3.37E+ 26 2.20E-16 9 (SC = −64.23) 3.44E+ 27 2.20E-16
Peru 12 (SC = −71.38) NAc NAc 12 (SC = −73.92) NAc NAc

Combinedb 12 (SC = 4.35) 8.43 0.003 12 (SC = −4.05) 121.25 6.87E-10

Countries with italized names share a land border with Chile. Nonneighboring countries included based on at least one epidemiological week where EII > 1. Cells in 
orange show significant results at α = 0.01.
aNo genomic surveillance data for this line.
baEII estimated from all countries with direct flights into Chile (including those minor contributors not shown in the table) and lEII estimates from all neighboring 
countries.
cUnavailable test result due to multicolinearity.
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and accuracy of the testing itself and the proportion of viral intro
ductions through the airport rather than by other routes. We con
sequently hypothesize that cases identified during airport 
surveillance would result in more limited transmission in the 
community. To explore this hypothesis, we used a discrete phylo
geographic approach to estimate the number of viral movements 
between countries other than Chile and the SCL International 
Airport, the movements from SCL airport into the community 
within Chile, and importations from other countries directly into 
community circulation in Chile (i.e. not detected or mediated via 
airport surveillance). The importation dynamics appear specific 
for individual variants: Gamma and Lambda importations were 
predominantly inferred directly from international destinations 
into the community with no evidence of airport mediation, while 
Alpha and Mu show an equivalent number of importations into 
the SCL International Airport as they did into the community. 
Delta shows a higher proportion of importations through the 
airport compared with directly into the community. Overall, neg
ligible numbers of transitions from the airport into the commu
nity were inferred (Fig. 2D). We note, however, that importations 
with no evidence of airport mediation could still have been im
ported through the airport but went undetected due to the timing 
of testing (no detectable virus at arrival) or that positive cases 
were not sequenced (although ∼95% of positive cases from airport 
surveillance during 2021 were sequenced, those excluded were 
those where sample quality prohibited genome sequencing and 
likely occurred at random across the collection of samples).

An independent estimation of both lEII and aEII for individual 
source countries per variant shows the likely contributors of viral 
importations over time (Fig. 2C), with Gamma and Mu introductions 
likely derived from a single source country (Argentina and Colombia, 
respectively), while Alpha and Delta likely being imported from mul
tiple countries (or states within the United States and Brazil) simul
taneously. Lambda exhibits a distinct pattern, in that its 
predominant source changed from Peru (via air travel) during early 
2021, to Argentina (via land border crossings) after April 2021 
(Fig. 2C), although the expected importation wave from Argentina 
was not observed using genomic data (Fig. 2A, Table 1). In the case 
of Gamma, only Argentina and Peru lEIIs show a significant correl
ation with inferred viral introductions, further suggesting that land 
mobility played a bigger role in the seeding of this variant in Chile 
compared with air travel. This is corroborated by the increased num
ber of Gamma viral imports directly into the community compared 
with the airport-mediated importations (Fig. 2D). Given that two 
consecutive epidemic peaks in Chile were likely driven by Lambda 
(which peaked around 2021 April 11) and Gamma (which peaked 
around 2021 June 6) (Fig. S6), it is possible that the earliest Lambda 
peak was partially driven by airport-mediated importations from 
Peru and the following Gamma peak (also representing a shift in 
the dominant variant circulating in Chile) was driven by land impor
tations from Argentina. Interestingly, both the aEII and lEII for Peru 
significantly correlate with the observed importations for all var
iants, suggesting that both land and air routes of entry played an im
portant role in how seeding events from this country into Chile took 
place (even though there is a single land border crossing point be
tween Peru and Chile; Table 1). Again, the relatively high number 
of introductions that show no evidence of being airport-mediated 
(Fig. 2D) for Alpha, Lambda, and Mu suggests that land importations 
were also commonplace during this time. All global EII estimates 
(combining both lEII and aEII, Fig. S7) and the phylogenetically in
ferred viral imports are temporally associated (FAlpha = 15.00, PAlpha  

< 0.001; FGamma = 7.19, PGamma = 0.01; FLambda = 12.97, PLambda <  
0.001; FMu = 5.46, PMu = 0.02; FDelta = 32.28, PDelta < 0.001).

Human mobility drives SARS-CoV-2 spatial 
invasion across comunas
Given the limited ports of entry for different variants into Chile, 
the arrival of individual lineages to new comunas after their 
introduction is expected to be driven by infected people moving 
within the country and seeding new local epidemics. We esti
mate the impact of local scale human mobility on the invasion 
dynamics of different TLs by comparing comuna-to-comuna ar
rival times extracted from a continuous phylogeographic ap
proach (31) (see Materials and methods). The spread of these 
TLs took place during periods of changing mobility in the country 
as lockdowns were enacted as part of the Paso a paso plan, which 
established a tiered system for the implementation of mobility 
restrictions to mitigate viral transmission (the plan employed 
various stringency tiers that can be summarized as (i) a high 
stringency full lockdown with mobility restrictions every day of 
the week, (ii) a mid-stringency weekend lockdown with mobility 
restrictions only during weekends, and (iii) a low stringency lock
down with no mobility restrictions; Supporting Text). This plan 
gave individual comunas the authority to determine the appro
priate stringency for these NPIs and the appropriate times to 
change stringency. Consequently, real-time mobility data (esti
mated from mobile phone data) are important in accurately esti
mating the contribution of human mobility to viral spread. 
Between January and October, there were at least three periods 
when increasing numbers of comunas were placed under lock
down (Fig. 1C); an accompanying reduction in mobility followed, 
reaching its lowest point around the April lockdown season, 
when up to 80% of comunas were under lockdown (Fig. 3A). 
The bounce-back following this downward trend also coincided 
with a policy implemented on May 26, when individuals with a 
complete immunization schedule were issued a “mobility pass” 
which allowed them free movement, even within comunas 
under lockdown (Fig. 3A).

We identified three distinct periods of human mobility within 
which the largest observed TLs were introduced into Chile: (i) 
epoch 1, between January and March when large Alpha, 
Lambda, and Gamma TLs were imported, (ii) epoch 2, between 
May and July, when major Mu TLs were imported, and (iii) epoch 
3, between July and September, when major Delta TLs were im
ported (Fig. S8). The arrival times of TLs to new comunas corre
lated with the mobility flow between the origin and destination 
comunas in the epoch during which the TLs were imported; this 
pattern is consistent for all epochs and for all variants (Fig. 3B). 
The strength of the correlation is generally greater for variants in
troduced during epoch 1, which predates the issuing of the mobil
ity passes.

TLs spread rapidly across the country as a result of these seed
ing events, predominantly in central Chile and in large urban 
centers either to the south (such as Temuco and Concepción) 
or to the north (such as Antofagasta; Fig. 4A). Following import
ation into the country, each TL spread via short- and long-range 
domestic seeding events into new comunas which occurred early 
in the invasion timeline of a TL. Some of the observed epidemic 
synchronicity between comunas (Fig. S9) is likely the result of 
these early seeding events taking place to locations which are 
both close and distant from the origin of a TL. While the timing 
of domestic seeding contributes to epidemic dynamics across 
the country, local transmission is likely affected by human mo
bility and mixing within specific locations which are in turn driv
en by different NPIs in effect before and during the occurrence of 
viral seeding events.
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Targeted NPIs and their effects on the spatial 
dynamics and persistence of SARS-CoV-2 lineages
An additional important factor in the unfolding of these epidemic 
waves is the highly localized NPIs implemented during 2021 fol
lowing the national Paso a Paso plan. Despite the decentralized au
thority on their implementation, the stringency of these NPIs 

tended to be synchronized across the country (more strongly 

among comunas in the same region) and followed national epi

demiological COVID-19 trends (Fig. S10). This created a scenario 

in which viral movements could occur between comunas under 

different lockdown stringency tiers. We hypothesize that move

ments within comunas should decrease with higher stringency 

A

B

Fig. 3. Human mobility, local NPIs and viral spread. A) Human mobility trends in Chile during 2020 and 2021 inferred from individual mobile phone 
device movements. Daily percentage of comunas under lockdown is shown for reference (left axis legend); this includes comunas under full lockdown or 
under weekend lockdown, producing the weekly spiking pattern after July 2020. The mobility metric L (see Materials and methods) relative to a baseline 
level (2020 March 9–15) from before the start of the COVID-19 pandemic is shown and used to estimate the reduction of links between comunas over time. 
The implementation date for a Mobility Pass (2021 May 26) for fully vaccinated individuals is marked in red. B) Spearman’s correlations between the total 
human mobility over the epoch when variants were first introduced (shown in B), here referred to as Mseed, and the time to the first detection in new 
comunas for each TL, here referred to as arrival times.
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lockdown tiers, which might also confer a protective effect on oth
er comunas due to fewer viral imports.

To test this, we implement a negative binomial model to esti
mate whether higher lockdown stringency levels (n = 3) are asso
ciated with fewer inferred viral movements (modeling details 
are given in Materials and methods). Our results show that lock
down stringency is significantly negatively correlated with the in
ferred number of viral movements after accounting for new 
reported cases, both within comunas (χ2 = 7.95, P = 0.02) and be
tween comunas (χ2 = 23.24, P < 0.001). Compared with comunas 
under full lockdown, comunas under no lockdown receive a great
er number of inferred viral movements from other comunas 
(IRRbetween_comunas = 1.16, 95% CI: 1.06–1.26); comunas under 

weekend lockdown receive approximately the same number of vi
ral movements from other comunas (IRRbetween_comunas = 0.97, 
95% CI: 0.88–1.08). These inferred viral movements are dependent 
on and limited by the probability of new imports generating cases 
that can be detected through genomic surveillance and the gen
omic surveillance intensity across the country (i.e. the likelihood 
of detecting a TL given the sampling process that produces the 
genomic data).

The effects of lockdown stringency on inferred viral move
ments within the same comuna exhibit a similar pattern: a limited 
and nonsignificant reduction is observed for comunas under 
no lockdown compared with comunas under full lockdown 
(IRRwithin_comunas = 1.05, 95% CI: 0.98–1.14) and comunas under 

A

B

Fig. 4. Mapping the spread of SARS-CoV-2 variants in Chile. A) Continuous phylogeographic reconstruction of the spread of the largest individual TL for 
each SARS-CoV-2 variant in Chile (Alpha TL 13, Gamma TL 35, Lambda TL 103, Mu TL 82, and Delta TL 64). Estimated median ages of tree tips and nodes 
are shown for each TL through the color gradient legend. B) Proportions of inferred viral movements by comuna for the 20 largest TLs in Chile, grouped by 
lockdown stringency level (of the comuna where each inferred viral movement culminates). The upper panel shows inferred movements between 
comunas (i.e. domestic importations of viral lineages from other comunas), and the lower panel shows inferred viral movements within comunas (i.e. 
viral movements that start and end in the same comuna, interpreted as localized viral transmissions).
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weekend lockdowns show no significant differences compared 
with comunas under full lockdown (IRRwithin_comunas = 0.95, 95% 
CI: 0.88–1.04). The magnitudes of these differences are small 
due in part to the large variation in the proportion of viral move
ments under each lockdown tier: essentially large numbers of vi
ral movements are inferred for some comunas, while for others 
only rare and sparse viral importations are inferred (Fig. 4B).

A separate factor that could affect viral lineage movements in 
Chile is the implementation of the mobility pass for fully vacci
nated individuals, to whom official lockdown restrictions did not 
apply. We expanded the previous model to account for the times 
before and after the implementation of the mobility pass on May 
26. No evidence was found that the implementation of the mobil
ity pass was associated with significant changes in the number of 
viral movements within comunas (χ2 = 1.04, P = 0.31), but we find a 
near two-fold increase (IRRbetween_comunas_mobility_pass = 1.73, 95% 
CI = 1.42−2.09) in the numbers of viral movements between co
munas (χ2 = 29.87, P < 0.001).

Lineage size distributions have been shown to vary due to im
portation times, such that earlier importations lead to larger 
TLs, and these larger lineages persist for longer after implementa
tions of NPIs (30). We measure persistence using an ad hoc ana
lysis of the Bayesian posterior tree distribution for the largest 
Gamma lineage ((32), see Materials and methods). We find that the 
proportion of persisting branches per comuna decays over time 
across all lockdown tiers (Fig. S11). The rates at which persisting 
branches decay over weeks vary when assessed by a fitted expo
nential curve (44.85, 22.72, and 19.74% weekly reduction for co
munas under full, weekend, and no lockdown, respectively) but 
wide credible intervals for all cases limit the interpretability of 
these differences between lockdown tiers. Future work should as
sess the location- and context-specific factors driving TL decay 
rates, including sampling intensities, geography, climate, and so
cial interactions.

Discussion
Our results provide an interdisciplinary evaluation of the utility of 
airport genomic surveillance and the role of targeted interven
tions in detecting and predicting viral spread of multiple viral var
iants. Airport and community genomic surveillance in Chile 
presented an opportunity to investigate the context-specific spa
tial dynamics of SARS-CoV-2 variants. We find that new viral im
portations (as inferred from genomic data) are correlated with 
estimates of the expected intensity of viral importations. These 
measurements use independent data sources, with the former 
relying on phylogenetically inferred viral importations and the 
latter combining the flows of passengers, prevalence of the vari
ant in the source country, and the number of cases. While this 
has been demonstrated in other settings, previous studies have 
typically focused on one viral variant at a time (1, 4, 30, 33). 
Incorporating the changing landscape of variant prevalence 
across South America revealed not only the importance of air 
travel but also that of land-based transport from neighboring 
countries, especially Chile’s large, shared border with Argentina, 
which facilitated direct viral importations into the community, 
as observed for the Gamma variant. While a previous study has 
shown the importance of land-based transport in Jordan and the 
Middle East (13), the role of these land-based viral importations 
in Chile is particularly important given that the largest wave of vi
ral importations from Argentina via land border crossings pre
ceded the second epidemic wave of 2021 dominated by the 
Gamma variant (Fig. S6). This shows that the effects of viral 

importations across land borders can be highly impactful to the 
trajectory of an epidemic. Airport surveillance, established by 
the precedent of the importance of travelers in driving the import
ation of viral lineages into a country (e.g., (34)), appeared to be ef
fective in detecting lineages at the airport, and we found some 
evidence that it prevented these lineages from further circulating 
in the community (Fig. 2D). The earliest location of detection of a 
new importation does not necessarily cluster geographically with 
its possible source, likely due to limited spatiotemporal resolution 
of genomic sampling and surveillance. However, a low prevalence 
at the inferred time of a new importation generally resulted in 
higher numbers of infections being derived from such importation 
for most variants (no such pattern was observed for Mu and an in
verse pattern was observed for Gamma, Fig. S3), as was observed 
early on during the summer of 2020 in Europe when low disease 
prevalence at a time when international travel was reopened re
sulted in larger viral TLs (32).

The frequencies of SARS-CoV-2 variants during late 2020 and 
2021 provide important context to our findings; in some regions, 
the pandemic was characterized by a sequence of genetic sweeps 
during which new variants displaced the circulating viral genetic 
lineages. In North America and Europe, this process started with 
Alpha (4, 35–38) which was subsequently replaced by Delta (1, 
39–42) and ultimately Omicron (33, 43–46). Similarly, in South 
Africa epidemic waves were driven by emerging and imported 
VOCs; starting with Beta, followed by Delta and finally Omicron 
(6, 7). It is also notable that other countries saw the dominance 
of viral lineages which did not significantly expand across their 
national borders during the early epidemic waves (e.g. lineage 
B.1.398 in Lebanon (47), lineages B.1.1.222 and B.1.1.519 in 
Mexico (18)) and that regionally important variants that did not 
reach global significance were also identified (e.g. variant Eta in 
Nigeria and West Africa (48)). Given the high connectivity of vari
ous South American countries with European countries and US 
states (8, 18, 49, 50), SARS-CoV-2 lineages that were dominant in 
the northern hemisphere heavily influenced the viral lineage 
composition of the region during the early epidemic waves (51– 
60). Nonetheless, locally emerging variants played an important 
role in the viral dynamics of the continent, as exemplified by the 
emergence and spread of Gamma (5, 61). A recent quantification 
of the differences in importation and transmission dynamics in 
the region (62) shows that air travel volume is a strong predictor 
for viral spread for variants like Gamma and Lambda and high
lights the heterogeneity of variant dominance across countries. 
Particularly, it emphasizes how Chile and Argentina show re
markable synchronicity between variant-specific epidemic waves. 
Our results expand this picture and disentangle the effects of dif
ferent types of cross-border mobility in the spread of viral line
ages. The possibility of extending this framework to predict 
which variants would become dominant in a country given the re
gional and global context would also require the characterization 
of both the unique immunity landscape of regions and the anti
genic characteristics of novel variants.

Human mobility patterns within the country and the imple
mentation of highly targeted NPIs played a role in the domestic 
spread of viral lineages within Chile. The time delay between 
the introduction of a new lineage in Chile and the local introduc
tion of the lineage in a different comuna within Chile is negatively 
correlated with the intensity of local human movements from the 
source; this observation sets the basis for a probabilistic measure 
of viral invasion during the early stages of an epidemic as more re
mote comunas, which are less central in the country’s mobility 
network, would expect a greater delay between the epidemic 
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taking off in central locations of the country and their own epi
demic seeding.

Links between human mobility and viral seeding may also have 
consequences for the efficacy of NPIs, such as the highly localized 
comuna-level lockdowns. The reactive nature of the implementa
tion of higher lockdown stringency levels likely resulted in a 
synchronized pattern of NPI stringency across the country (with 
strong regional synchronicity, Fig. S10). Viral genomic data sug
gest that the patterns of lineage movements across comunas 
show some limited differences dependent on lockdown strin
gency, but the limited spatiotemporal coverage from genomic sur
veillance poses a considerable limitation to the interpretation of 
these differences. Furthermore, the observed decay in the propor
tion of persisting lineages across all lockdown tiers follows pat
terns observed in other contexts (30), and it is therefore unclear 
the extent to which these are attributable to the NPIs themselves. 
A detailed analysis on the effects of these stringency levels should 
be paired with the quantification of the mobility changes pro
duced by NPIs to fully understand the causal relationship of lock
downs, changes in human behavior, and the infection dynamics.

Our study has several limitations. Firstly, after the emergence of 
Alpha, Gamma, and Beta, Chile implemented and increased their 
airport and community surveillance during 2021. This meant that 
the proportion of cases sequenced increased which was visible es
pecially during the declining Delta wave at the end of 2021 (Fig. S2). 
The significantly larger number of inferred Delta introductions 
therefore needs to be interpreted with caution. We did, however, 
also estimate an increase of Delta EII during that time. Secondly, 
our EII calculations are biased due to variable case reporting across 
space and time. Previous work has proposed that sequencing ∼5% 
of all cases allows the detection of a new viral lineage with a detec
tion probability >80%, and that the sequencing intensities dis
played by lower middle– and upper middle–income countries (as 
is the case for many cases in South America) allow for the estima
tion of a lineage prevalence with a small margin of error (63). It is 
unclear whether lower levels of sequencing observed for certain 
countries resulted in biases in genomic prevalence estimates (i.e. 
the true prevalence of a variant could be either higher or lower 
than expected), which adds further uncertainty to our EII esti
mates. Thirdly, the mobile phone data represent roughly one quar
ter of the population of Chile and it has been shown that they over 
represent urban areas and higher income groups. Accounting and 
adjusting for these biases will be an important area of future 
work. Fourthly, following an importation, viral lineages spread in 
the country widely and circulated more intensely in key regions 
in north and central Chile. While continuous phylogeographic ana
lyses are prone to sampling biases (64, 65), the distribution and cir
culation of these lineages around important urban areas and 
locations attractive for tourists suggests that viral movements in 
the country follow from human movements, as has been reported 
previously (1, 4, 8, 9, 30, 66, 67). The invasion process appears to be 
explained by the connectivity between comuna pairs, making hu
man movement estimates from mobile phone usage an important 
predictor of arrival times of a new viral lineage into different comu
nas. Nonetheless, the effects of the heterogeneous NPI landscape in 
the country during the study period are also meaningful and likely 
represent an atypical mobility regime for Chile. A full description of 
the link between lockdown tiers and the true changes in human 
movement patterns (i.e. compliance with NPIs) is required to clarify 
the link between viral movements, human mobility, and NPIs. It is 
also crucial to account for the effects of socioeconomic differences 
both at an individual and geographic level (26). The early COVID-19 
epidemic waves in Santiago in 2020 were sparked in wealthier 

comunas which also became more isolated following the imple
mentation of the first lockdowns in the city (25). Exploring these 
patterns during subsequent epidemic waves and under comuna- 
level lockdowns requires additional follow-up work.

Coordinated genomic surveillance and the use of human mo
bility data can aid in the monitoring and prediction of viral spread 
during a large-scale national epidemic of directly transmitted 
pathogens. The weight of each of these data streams in the infer
ence of pathogen lineage dynamics is an important question to 
address, as scaling up genomic pathogen surveillance can be cost
ly, and data on human movements can be unavailable, or sensi
tive when not aggregated appropriately. Nonetheless, we find 
that surrogate measures such as EIIs correlate with inferred intro
ductions, although EIIs require the collection and accessibility of 
epidemiological (and sometimes genomic) data from other coun
tries. Identifying which locations act as key sources of viral impor
tations can help to prioritize surveillance (68). Furthermore, our 
findings on the effect of human movement on the arrival times 
of viral lineages to new locations and the mitigating effects of mo
bility restrictions at targeted spatial scales can inform consider
ation of NPI packages that have a minimal effect on human 
freedom of movement while maintaining a high efficacy in epi
demic control.

Materials and methods
SARS-CoV-2 sampling from community and 
airport surveillance in Chile
Chile implemented a systematic genomic surveillance program in 
April 2021. During epidemiological week (epiweek) 47 of 2020 
(2020 November 21 to 2020 November 27), randomization of com
munity samples for the early identification of VOI was imple
mented through PCR testing of variant-associated mutations (69, 
70). This strategy considers random, representative sampling with
out incorporating clinical or epidemiological criteria to estimate 
the prevalence of SARS-CoV-2 variants and lineages circulating in 
Chile, using a weekly sample size based on the number of new 
cases registered the previous week. During epiweek 5 of 2022 
(2022 January 30 to 2022 February 5), this strategy was updated 
for sampling from Arturo Merino Benítez International Airport (in 
this work referred to as the Santiago International Airport or SCL 
for short) and the laboratory requirements for submitting samples 
to the Instituto de Salud Publica (ISP) for genomic sequencing of 
SARS-CoV-2 cases (71). The strategy provided specific details re
garding the sample size, which was based on the number of cases 
in travelers during the previous epiweek (with a novel variant 
prevalence set at 0.50%, or 1/200, and considering a 95% confidence 
level; (72)). This approach aimed to identify novel variants entering 
the country and estimate the incidence of circulating variants in 
travelers. From this surveillance program, we included 787 com
plete genome sequences from the airport surveillance scheme (40 
Alpha genomes, 27 Gamma genomes, 62 Lambda genomes, 68 
Mu genomes, 403 Delta genomes, and 187 genomes from other viral 
lineages) and 7,957 genome sequences from the community sur
veillance scheme (129 Alpha genomes, 2,100 Gamma genomes, 
1,418 Lambda genomes, 745 Mu genomes, 1,796 Delta genomes, 
and 1,769 genomes from other viral lineages).

Sequencing was performed following details reported in (73). 
Total RNA was extracted from nasopharyngeal swabs using the 
Zybio EXM 6000 automated system (Chongqing, China), tran
scribed to cDNA using the SuperScript III One-step RT-PCR 
System with Platinum Taq Kit and RNase OUT (Invitrogen), and 
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amplified using the COVID-19 ARTIC Illumina v.3 primer set. 
Sequencing libraries from PCR products were produced using 
the Nextera Flex Library Prep Kit (Illumina, San Diego, CA, USA), 
purified with Agencourt AMPure XP beads (Beckman Coulter, 
Brea, CA, USA), and quantified using a Quant-it dsDNA HS Assay 
Kit (Invitrogen). Purified libraries were sequenced in a MiSeq se
quencer using a 300-cycle kit (Illumina, San Diego, CA, USA). 
Sequencing quality control was performed using the FastQC 
v0.11.8 software, reads were filtered and trimmed using the 
BBDuk software, and genome assembly was performed using 
the IRMA v0.9.3 software.

Data from COVID-19 epidemics in Chile and 
connected countries
Epidemiological, genomic, and human mobility data were collected 
between November 2020 (which includes the earliest estimated an
cestor of a TL in Chile with a TPMRCA on 2020 November 1; 
TPMRCA referring to the time of the parent node of the earliest 
tree node inferred to have occurred in Chile, followed by local viral 
transmission inside the country) and October 2021 (which includes 
the latest sample collection date for our study time period on 2021 
October 12). This time span is henceforth referred to as the “study 
period”.

The monthly numbers of air travelers entering Chile during the 
study period were collected from the National Civil Aviation 
Agency and the National Ministry of Transportation and Telecom
munications (Junta Aeronáutica Civil, Ministerio de Transportes 
y Telecomunicaciones) at http://www.jac.gob.cl/estadisticas/infor 
mes-estadisticos-mensuales-del-trafico-aereo/(retrieved on 2022 
August 3). These data include the source city from which passengers 
arrived into Chile, as well as the airport to which they arrived. Given 
that 99.24% of returning travelers entered the country through the 
Santiago de Chile International Airport (SCL) and that all other inter
national airports only served travelers from eight countries (Argen
tina, Colombia, Peru, Paraguay, Venezuela, Bolivia, Haiti, and 
Uruguay) out of 23 countries where travelers arrived from, data 
from airports outside of SCL were not considered for further ana
lyses as their overall contribution was negligible. Furthermore, gen
omic data from airport surveillance were only collected at SCL, 
making the use of these data more comparable to our phylogenetic 
inferences. Given that counts for incoming air travelers were only 
available on a monthly basis, the total number of passengers per 
month was divided equally across the weeks that make up each 
month to obtain weekly estimates. This transformation assumes 
equal numbers of passengers entering every week from each origin 
city, which is justified by the periodic frequencies of airline schedul
ing practices (74). The monthly number of individuals entering the 
country through land border crossings was obtained through an In
formation Transparency request to the government of Chile data 
portal (https://datos.gob.cl). These data included the name of the 
specific border crossing station at which the numbers were re
corded, from which we can identify the source country from where 
travelers entered and the comuna in Chile where they first arrived. 
We also divided the numbers of travelers equally across weeks in 
any given month for convenience, even if the periodic flight sched
ule assumption is unlikely to apply to land border crossing data.

Anonymized, individually reported COVID-19 cases from Chile 
were provided by the ISP of Chile. For each case, the sample collec
tion date and comuna (lowest administrative level in Chile equiva
lent to adm3) of residence of the patient are recorded. Cases are 
aggregated daily and by comuna to produce epidemiological time 
series for the country. During the study period, Chile established a 

unique decentralized system for NPIs where individual comunas 
had autonomous authority to place their area under one of three 
tiers of stringency on limitations to human movements and gather
ings (Supporting Text). Daily records for the NPI stringency tier for 
each comuna were used to estimate the total population under lock
down on any given day by multiplying the number of comunas 
under lockdown by their respective population sizes (provided with
in the same data files, obtained through the public COVID-19 GitHub 
repository of the Government of Chile, (no longer available online) at 
https://github.com/MinCiencia/Datos-COVID19/tree/master/ 
output/producto24). Population sizes and aggregated case counts 
per country for locations from which incoming travelers were re
corded into Chile during the study period were obtained from the 
Our World in Data COVID-19 dashboard at https://ourworldindata. 
org/covid-cases (retrieved on 2021 December 5; (75)).

Genomic data from Chile were generated through two distinct 
genomic surveillance programs and are described in the SARS- 
CoV-2 sampling from community and airport surveillance in Chile 
section. Metadata for these sequences separated by surveillance 
program were provided by the ISP, including an individual 
sequence ID which matches the ID assigned to viral genomes 
when uploaded to GISAID (76). Genome sequences from Chile 
were downloaded from GISAID (retrieved on 2022 June 30) and fil
tered by matching individual IDs with the metadata provided by 
the ISP. The proportion of sequences for each variant observed 
under the community surveillance scheme during each epidemic 
week was used to estimate the number of cases attributable to 
each of the variants over time.

Generation of a background genomic dataset 
utilizing international human mobility data
Global genome datasets assigned to each variant under investiga
tion (Alpha, Gamma, Lambda, Mu, and Delta) were downloaded 
jointly with the Chile sequences from the aforementioned 
GISAID dataset. To gain an overview for the global introductory 
events into Chile, we curated a bespoke global dataset using open
ly available human mobility data. We identified the five South 
American countries with the highest intensity of human mobility 
into Chile (Argentina, Bolivia, Brazil, Colombia, and Peru) and the 
seven countries outside of South America with direct flights and 
the highest intensity of human mobility into Chile (Mexico, 
Canada, France, Panama, Spain, the United States, and the 
United Kingdom). For each variant, all sequences from these loca
tions were identified then randomly sampled, uniformly across 
time per epidemiological week over the study period. This resulted 
in datasets with an approximate 1:1:1 ratio of sequences from 
Chile vs. sequences from countries with the highest relative mo
bility vs. countries with the most direct flights from outside of 
South America: 609 sequences for Alpha, 4,826 sequences for 
Gamma, 3,164 sequences for Lambda, 1,720 sequences for Mu, 
and 6,983 sequences for Delta.

Extraction of mobility estimates from mobile 
phone network data
We analyzed up to 3.5 million individual daily trajectories (which 
correspond approximately to 24% of the Chilean mobile phone 
subscription market share) from a total of 6.5 million Telefonica 
mobile phone users. We then aggregate individual trajectories 
into mobility indicators, selecting three main mobility aggregation 
methods, and we proceed by evaluating the interplay of the mobil
ity process, with the spatial invasion. The first aggregating meth
od counts the number of displacements between any two 
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consecutive eXtended Detail Records (XDRs) made by a user, and 
it accounts for the full trajectory of each individual (D). The se
cond coupling matrix connects the residence location of each 
user to all their visited locations, with a coupling force that is pro
portional to the number of XDRs made in each location (L). The 
third coupling matrix (L1) connects the residence location of 
each user to all their visited locations, with a coupling force that 
is proportional to the time spent in each location (77). We quanti
fied the associated coupling matrices (D, L, and L1) for each month 
during the study period in Chile at the comuna level.

Phylogenetic inference of SARS-CoV-2 viral 
importations into Chile
Variant-specific genomic datasets were aligned to the Hu-1 refer
ence genome (78, 79) using Minimap2 (80), and a maximum likeli
hood (ML) phylogenetic tree was estimated for each alignment 
using IQtree (81) under a GTR substitution model and by modeling 
the evolutionary rate variation across sites using a Gamma distri
bution with four site categories. The temporal signal for each 
phylogeny was evaluated by estimating the regression between 
root-to-tip lengths and sample collection dates using TempEst 
(82), after establishing the most likely root for each phylogeny 
by a minimization of residuals from each regression. Sequences 
for which the residuals were estimated to fall more than two 
standard deviations from the mean were removed, and the ML 
tree re-estimated under the same conditions described above. 
For these phylogenies, polytomies were not randomly resolved 
but rather maintained in the trees.

Branch lengths for the inferred ML trees were re-scaled to fit a 
temporal timescale using TreeTime (83). For all phylogenies, a 
fixed evolutionary rate of 7.4 × 10−4 subst./site/year was used for 
these analyses, following the empirical findings by Ghafari et al. 
(84). Given that individual analyses were performed per variant, 
the use of a fixed evolutionary rate allows us to ignore the likely 
inflated evolutionary rate observed prior to the emergence of indi
vidual variants (85) while also minimizing potential comparability 
issues among datasets due to the increased rate variation among 
lineages due to the different dataset sizes and sampling periods 
which can obscure the temporal signal (86).

Time-scaled ML phylogenies were further analyzed using an 
alignment-free likelihood estimation method implemented in 
BEAST v1.10.5 (prerelease; commit:d1a45) commonly known as 
Thorney BEAST, and described in further detail in (30). The time- 
scaled ML phylogenies were used as starting trees, while the pre
viously described polytomic ML phylogenies were used as data 
trees; Thorney BEAST samples from different node heights and 
resolutions for polytomies to generate a posterior sample where 
branch length (in genetic terms; i.e. number of mutations) likeli
hood estimates are calculated as a function of a Poisson distribu
tion with mean equal to the evolutionary rate multiplied by the 
branch length (in time units; (1)). Individual MCMC chains for 
each dataset were run for 100 million steps with a burn-in of 
∼10% of the initial steps. All runs had a fixed evolutionary rate 
of 7.4 × 10−4 subst./site/year and a nonparametric Skygrid tree pri
or (87) with breakpoints every two weeks of the sampling period 
for the specific variant being analyzed. Trees were sampled every 
5,000 steps, and convergence of all parameters was evaluated us
ing Tracer (88) and defined as parameter effective sample sizes 
higher than 200.

The resulting empirical tree distributions were reanalyzed us
ing BEAST 1.10.4 to estimate the number of importations into 
Chile using a discrete trait analysis (DTA) phylogeographic 

approach. Sequences collected from outside of Chile were labeled 
as “non-Chile”; sequences collected within Chile were further 
identified as “airport” or “community” sequences according to 
whether they were collected through airport surveillance of re
turning travelers or community surveillance inside Chile, respect
ively. Transitions between discrete states were estimated using an 
asymmetric model, and individual counts of transitions between 
states were estimated by stochastic mapping in the form of 
Markov jumps and rewards (89, 90). These DTAs were run for 10 
million MCMC steps and sampled every 10,000 steps. Summary 
maximum clade credibility (MCC) trees were generated for all da
tasets using TreeAnnotator.

Phylogeographic reconstruction of the domestic 
spread of viral TLs in the country
From the discrete phylogeographic analyses, individual importa
tions were identified following the rationale used by du Plessis 
et al. (30): subtrees that descend from a node inferred to have oc
curred inside Chile, which in turn descends from a node inferred 
to have occurred outside Chile. These subtrees, referred to as 
TLs (TLs, (30)), were extracted using Fertree (https://github.com/ 
jtmccr1/fertree). We analyze the 20 largest TLs (Alpha, n = 1; 
Gamma, n = 2; Lambda, n = 5; Mu, n = 5; Delta, n = 7) which corres
pond to those with sizes >93rd percentile of all identified lineages 
within the country (>61 tips). These TLs range in size from the lar
gest being Gamma TL 35 (n = 1827) for Gamma (corresponding to 
the Chile-specific PANGO designated Gamma sub lineage N.4) to 
the smallest being Mu TL 61 (n = 61) for Mu. We extracted these 
larger TLs from the summary MCC trees and performed individual 
continuous phylogeographic analyses for each to map their 
spread across comunas within Chile.

Sequence metadata were available for sequences up to the co
muna (adm3) level, but no individual georeferenced coordinates 
were collected to ensure patient privacy. For each individual se
quence where the comuna sampling location was known, we ran
domly assigned a grid cell with sample weights proportional to the 
population density within the comuna obtained from WorldPop, 
at a resolution of 1 km2 grid (https://hub.worldpop.org/geodata/ 
summary?id=44918). Sequences assigned to the same grid cell 
were further given random coordinates within the grid with uni
form sampling to ensure that all sequences have unique coordi
nates as required by the continuous phylogeographic model. A 
final check was placed to ensure that the final coordinates fell 
within the comuna polygon.

For the 20 extracted subtrees, we pruned all sequences not col
lected in Chile and assigned the aforementioned coordinates to 
the remaining tips. We then used BEAST to estimate the continu
ous diffusion of the TLs using a relaxed random walk model with a 
Cauchy distribution to account for among-branch dispersal vel
ocity heterogeneity (31). MCMC chains were run by duplicate for 
50,000,000 steps each, with multiple runs performed when neces
sary to achieve convergence. Multiple chains for each TL were 
combined using LogCombiner, and the summary MCC trees for 
each TL were generated with TreeAnnotator. Mapping the disper
sal of each TL in Chile was done with custom Python scripts 
(https://github.com/leoferres/spatial_dynamics_covid_chile).

EII indices from variant prevalence, case, and 
human travel data
To estimate the expected number of importations of each VOI/ 
VOC into Chile over time independently from our phylogenetic in
ference, we compute a weekly EII index for every country from 
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which incoming flights into Chile were recorded during late 2020 
and 2021. Exceptions to the country-level EIIs were considered 
for the United States and Brazil where state-level estimates 
were produced instead to account for the broad geography of 
both countries and their heterogeneous epidemiological land
scapes. Five states from the United States (Florida, New York, 
Texas, Georgia, and California) and seven states from Brazil (São 
Paulo, Rio de Janeiro, Goias, Parana, Rio Grande do Sul, Bahia, 
and Santa Catarina) were included as these are the only states 
in each country from which direct flights arrive to SCL.

For any variant under investigation X (Alpha, Gamma, Lambda, 
Mu, and Delta) and source location l, the EII over n epidemiological 
weeks is defined as

EIIX,l,i =
Il,i
Pl

gX,l,iAl,i 

where Il,i is the aggregate number of new cases for epidemiological 
week i in location l, Pl is the population from location l, gX,l,i is the 
proportion of viral genome sequences (available in GISAID) that 
were sampled at location l in week i and that are assigned to variant 
X, and Al,i is the total air passenger volume coming into Chile from 
location l on week i. For the three neighboring countries (Argentina, 
Bolivia, and Peru) that share a land border (and therefore border 
crossings) with Chile, variation of the EII was estimated (lEII) as

EIIX,l,i =
Il,i

Pl
gX,l,iLl,i 

where Ll,i is the number of land travelers entering Chile from loca
tion l on week i. For these countries, the air travel–based EII de
scribed previously (referred to as aEII when relevant) was 
combined with the lEII to estimate a global EII as

EIIX,l,i =
Il,i
Pl

gX,l,i(Al,i + Ll,i) 

Since this formulation of the EII estimates the numbers of individ
uals expected to enter the country infected with variant X, we also 
derive a combined cEII from all locations from which international 
air travelers come to Chile:

cEIIX,i =
􏽘

l

EIIX,l,i 

Vector autoregressive models to test forecasting 
power of EIIs on viral imports per variant
Given the weekly estimates, every EII variation for each individual 
viral variant X is concatenated into a time series covering t = 48 
epidemiological weeks, describing the expected number of intro
ductions per variant over time. These EII time series are compared 
with time series of inferred observations of viral importations 
from the genomic data P, taken as the weekly aggregate counts 
of phylogenetic nodes which are the most recent common ances
tors of individual Chile TLs. We formulate a bivariate vector 
autoregression model from both time series:

yX,t = β0 +
􏽘k

i=1

βiyX,t−i + υt 

where yx,t is a vector of both P and EII values at week t and k is the 
maximum lag, equal to 12 to represent a maximum allowed delay 
between expected and inferred importations of approximately 
three months. From this, the system of equations is:

PX,t

EIIX,t

􏼒 􏼓

= βX,P
βX,EII

􏼒 􏼓

+ βPP αP,P

αEII,P βEII,P

􏼒 􏼓
PX,t−1

EIIX,t−1

􏼒 􏼓

+ υPt

υEIIt

􏼒 􏼓

The optimum value for k is evaluated by comparing information 
criteria from each lag value using the vars package in R; we specif
ically evaluate the Akaike information criteria (AIC), Hannan– 
Quinn information criteria, Schwartz criteria (SC), and Akaike’s 
final prediction error. We take the lowest value among the four 
indicators as the indicator of the optimum lag value indicator, 
which in most cases corresponds to SC or AIC (Table 1). To test 
whether phylogenetically inferred importations P are forecasted 
by the EII estimates, we perform Granger causality (GC) tests 
with α = 0.05. Contrary to what its name suggests, GC tests do 
not establish causality between the time series but rather tempo
rally dependent correlation; we therefore refer to our findings as 
one time series Granger-causing the other, which is not true 
causality.

Estimation of the effects of human mobility at the 
comuna level on viral movements
Following a viral importation, some TLs spread domestically with
in Chile. The comunas where these local TLs were first detected 
are not a reliable measure of where the introduction likely took 
place due to delays between importation and detection as has 
been shown previously (30) (Fig. S12 shows the numbers of “first 
detection” events in the country and the location of land border 
crossings in the country; the lag between the TMRCAs and the first 
detection of TLs in Chile was estimated to be 9.59 ± 8.95 days). 
Instead, we estimate the impact of local scale human mobility on 
the invasion dynamics of different TLs by comparing comuna- 
to-comuna-specific arrival times extracted from our continuous 
phylogeographic analysis to human movements.

For each epoch v, we compute the metric of mobility exchange 
between the source comuna s and location j, namely Mv

j as:

Mv
j =

􏽘T

t>t0

(L1sj,t
+ L1 js,t

) 

where j represents comunas, t runs from t0, day of first detection of 
the variant defined in epoch v in the source comuna s, to T, days to 
consider for the mobility aggregation, L1sj,t is the time spent by 
residents of s in j on day t. Mv

j accounts for the total time spent, re

spectively, by users of the source location in comuna j and vice 
versa. Epochs v are defined as 60-day intervals starting on the first 
date of detection of a variant (which defines the epoch) at comuna 
level and are named after the variant itself. The time window of 
mobility aggregation T must be shorter than the epoch; in Fig. 4, 
we chose T = 2 weeks. For each epoch, only transmission events 
with both transmission start date and respective source time t0 

falling within the epoch time window are chosen. Epochs may in
clude multiple TLs spreading at the same time. Arrival times at co
munas j are then compared with the human mobility between 
comuna j and the mobility between j and source s.

Estimation of the effects of NPI stringency at the 
comuna level on viral movements and viral 
lineage persistence
We formulated simple negative binomial models to test whether 
the stringency of NPIs implemented at the comuna level had a 
measurable effect on the estimated numbers of viral movements 
within a single comuna or between comunas. For every inferred 
viral movement (represented by a branch in the continuous phy
logeographic analysis, with the ancestral node location account
ing for the source comuna for that movement and the 
descendant node or tip location accounting for the destination co
muna for that movement), we determine the lockdown stringency 
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tier that corresponds to the estimated median age of the source 
and destination comunas, and aggregate all movements based 
on the lockdown tier of the destination comunas. The models es
timate the aggregated counts of viral movements (either into each 
comuna or within a comuna) explained by both the lockdown 
stringency tier (three levels: no lockdown, weekend lockdown, or 
full lockdown) and the numbers of new cases reported during 
the duration of that lockdown. We confirmed the appropriateness 
of a negative binomial model compared with a Poisson regression 
model (i.e. the assumption of conditional means not being equal 
to conditional variances) by performing a likelihood ratio test be
tween both model fit methods (DF = 1, P < 0.001). From the fitted 
model coefficients, we estimate the incidence rate ratios (IRR) to 
quantify the effect of lockdown tier stringency on viral movement 
counts. We further expand these models to also account for the 
effect of the implementation of a mobility pass for fully vacci
nated individuals on 2021 May 26; results for both model formula
tions are shown even if a model which does not account for the 
mobility pass better fits the data for viral movements within co
munas (LRT = 1.04, P = 0.31) while accounting for the mobility 
pass is a better fit for the data of viral movements between comu
nas (LRT = 29.87, P < 0.001).

Following the arrival of viral lineages to a new location (comu
na), they could either persist and be detected within that location 
or become extinct. The number of newly arrived lineages and 
previously circulating lineages in a location can be used to esti
mate the proportions of persisting lineages (32, 49). We analyze 
the posterior tree distributions from the continuous phylogeo
graphic analyses using PersistenceSummarizer (32) to estimate 
the number of persisting lineages within the 14 comunas with 
the highest number of observed viral movements (five comunas 
in the Santiago Metropolitan Area: Pirque, Puente Alto, Santiago, 
San Jose de Maipo, and San Bernardo; nine comunas from the 
rest of the country: Arica, Los Angeles, Requinoa, Copiapo, 
Iquique, Valparaiso, Antofagasta, Concepcion, and Puerto 
Montt) under different lockdown stringency tiers. We aggregate 
comunas under the same lockdown tier and set the date when 
the tier was enacted as the ancestral time and follow up with se
quential evaluation times on every week following the imple
mentation of the lockdown stringency tier. This way, we can 
estimate persistence trends in different comunas under the 
same lockdown stringency tier despite the fact that these were 
implemented at different points in time, and that stringency 
tiers were enacted and relaxed on multiple occasions across 
our study period. Full and weekend lockdowns were imple
mented for a maximum continuous time of 16 and 20 weeks, re
spectively (Fig. S13); we therefore perform lineage persistence 
analyses for a maximum of 25 weeks following the implementa
tion of a specific stringency tier. The remaining comunas beyond 
the 14 mentioned above are excluded as they display few viral 
movements and therefore yield insufficient information regard
ing lineage persistence.

To estimate the rate of decay of persisting lineages under 
different stringency tiers, we fit an exponential model to the 
median number of persisting lineages over every week follow
ing the implementation of the specific tier. The model is formu
lated as:

y = a × eb,s 

where y is the median proportion of persisting lineages from 
Gamma TL 35 and x is the number of weeks since the implemen
tation of that lockdown tier. Decay rates are estimated as model 
parameter b.
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