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Abstract

The suspensory ligament (SL) is a key component of the elaborate and highly adapted

suspensory apparatus in the horse. In addition to contributing to stabilisation of the

metacarpophalangeal joint, the SL has a spring like function to reduce the energetic cost

of locomotion. Although the SL is highly prone to injury in horses of all ages and compet-

ing in a wide range of disciplines, knowledge regarding fundamental structure–function

relationships in the SL is lacking, particularly compared with other injury-prone tendinous

structures such as the superficial digital flexor tendon. In this review, we discuss current

knowledge of SL composition, structure and mechanical properties and describe the epi-

demiology, aetiology and pathophysiology of injuries. We evaluate different diagnostic

approaches and treatment modalities and identify key areas for future research.
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1 | SUSPENSORY LIGAMENT
COMPOSITION AND STRUCTURE

The specialised function of the suspensory ligament (SL) is achieved by

the highly adapted composition and structural arrangement of the tissue

comprising the ligament. The SL originates on the proximo-palmar/

plantar aspect of the third metacarpus/tarsus and continues distally,

bifurcating and inserting onto the abaxial surface of the proximal sesa-

moid bones (Figure 1). The extensor branches extend medially and later-

ally around the metacarpophalangeal joint, fusing with the common

digital extensor tendon.3,4 The SL is often divided into three regions,

the proximal portion, the body, and the branches (Figure 1B,C). The SL

is the anatomical equivalent of the interosseus muscle in other species,

and may be referred to by that name in the horse. However, the equine

SL has become highly adapted during evolution, with an almost com-

plete loss of muscle fibres except in the proximal region, and an increase

in collagen content.4 These evolutionary adaptations have resulted in

the development of a unique structure, with characteristics reminiscent

of tendon, ligament and muscle.5

The SL has several functions during locomotion. It is a key com-

ponent of suspensory apparatus, preventing hyperextension of the

metacarpophalangeal joint during stance phase.3,4 Indeed, at maximal

metacarpophalangeal joint extension the SL and accessory ligaments

of the superficial and deep digital flexor tendons are predicted to con-

tribute over half of the total support moment around the joint.6 The

SL also functions to store and return elastic energy in a similar manner

to the forelimb superficial digital flexor tendon (SDFT), reducing the

energetic cost of locomotion.7 At rest, the SL contributes to the pas-

sive stay apparatus, allowing horses to remain standing for long

periods of time with little muscular effort.8,9

The predominant extracellular matrix (ECM) protein that comprises

the SL is type I collagen, with values varying from 34% to 65% dry weight

(Table 1).5,11 The collagen content varies along the length of the ligament,

with a greater collagen content distally, as the proportion of muscular tis-

sue diminishes.5 These values are lower than those in the SDFT which is

�75% collagen by dry weight (Table 1). Collagen molecules are stabilised

by intermolecular crosslinks, including hydroxylysyl pyridinoline (HP) and

lysyl pyridinoline (LP). While HP concentrations are significantly lower in
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the SL compared with the SDFT, the concentrations of other crosslinks

are similar and do not change along the length of the SL, suggesting a

broadly similar crosslink profile between the two tissues.5,12 Another

crosslink, pentosidine, accumulates spontaneously with ageing and there-

fore can be used as a marker of tissue turnover.13,14 Higher pentosidine

levels have been reported in the proximal region of the SL compared with

the mid-body and branches, indicating lower turnover of collagen proxi-

mally, which may contribute to the increased risk of injury to this region.5

Pentosidine levels in the mid-metacarpal region are higher in the SL than

in the SDFT, indicating that the SL is turned overmore slowly (Table 1).

As in other tendons and ligaments, the collagen in the SL is highly

aligned and arranged in a hierarchical manner, with type I collagen

fibres grouped into fascicles, which are surrounded by interfascicular

matrix (also referred to as endotenon).5 The diameter of the collagen

fibrils follows a bimodal distribution, similar to that in the SDFT.15 The

mass average fibril diameter, however, is significantly lower in the SL

(122 ± 14 nm, n = 6) than in the SDFT (169 ± 19 nm, n = 6) (Figure 2),

although both structures have a higher proportion of small diameter

fibrils than the DDFT and CDET. This likely reflects the similar function

of the SDFT and SL, as it has been shown that a lower mass average

fibril diameter is associated with a lower elastic modulus.12

The noncollagenous protein content of the SL is not well estab-

lished; however, it has been shown that glycosaminoglycan (GAG)

content, a measure of proteoglycan levels, varies along the SL length,
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F IGURE 1 The location, macroscopic
and histological appearance of the
suspensory ligament. Sagittal
section through the forelimb showing the
location of the suspensory ligament (SL),
third metacarpal bone (MCIII) and flexor
tendons (FT) (A). Palmar view showing
proximal (Prox), mid-body (MB) and
branch (Br) regions of the suspensory

ligament (B). Transverse sections through
the forelimb showing the appearance of
the proximal, mid-body and branches of
the suspensory ligament. Interfascicular
spaces are denoted by * (C). Histological
section from the mid-body showing the
presence of muscle fibres within the
interfascicular spaces present along the
length of the ligament. Scale bar: 200 μm
(D). Adapted from Denoix,1 Schramme
et al.2 and Royal Veterinary College
Equine Distal Limb Resource (www.rvc.ac.
uk/static/review/equine-distal-limb/
index.html) with permission from the
publishers.

2 GUEST ET AL.

 20423306, 0, D
ow

nloaded from
 https://beva.onlinelibrary.w

iley.com
/doi/10.1111/evj.14447 by R

oyal V
eterinary C

ollege, W
iley O

nline Library on [28/11/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

http://www.rvc.ac.uk/static/review/equine-distal-limb/index.html
http://www.rvc.ac.uk/static/review/equine-distal-limb/index.html
http://www.rvc.ac.uk/static/review/equine-distal-limb/index.html


with the lowest content in the proximal region which increases dis-

tally.5 The SL also has a higher total sulfated GAG content compared

with the SDFT (Table 1). Proteoglycans regulate collagen

fibrillogenesis,17 but the abundance, location and function of specific

noncollagenous proteins within the SL remains to be determined.

Indeed, while advanced techniques are now available to provide a pro-

teomic profile of ECM-rich tissues,18 these experiments are yet to be

performed for the SL, meaning that our knowledge of proteins that

may have an important role in tissue function are yet to be identified.

Unlike other ligamentous structures, the SL contains a high pro-

portion of muscle fibres and other noncollagenous tissue, which varies

not only along the length of the ligament but also between fore and

hindlimb tendons and in different breeds. The muscle fibres are con-

tained within two interfascicular spaces, one medially and one later-

ally (Figure 1C, indicated by * in inset). These spaces are evident

throughout the majority of the fore and hindlimb SL, and are present

slightly distal from the origin, terminating in the middle portion of

the ligament branches. They are filled with variable proportions of

skeletal muscle fibres, loose connective tissue, adipose tissue as well

as blood vessels and nerves.2 The sizes of the interfascicular spaces

are also heterogeneous, increasing in the mid-portion and occupying

up to 60% of the cross-sectional area, with the lateral space being

significantly larger and containing more muscle fibres than the

medial space.5,19

Several studies have investigated differences in the proportion of

muscle fibres in the SL with age, breed, sex and region; however,

there is little agreement in the literature. Initial studies reported no

change in muscle content with ageing,20 and other studies have not

reported horse age.5 However, a more comprehensive study found a

significant decrease in muscle content, as well as adipose tissue with

ageing, with a concomitant increase in connective tissue content,

although it should be noted that this study was conducted in stan-

dardbreds and so findings may not be applicable to other breeds.21 In

young Thoroughbreds, high intensity training resulted in a significantly

higher collagen content in the SL compared with horses exercised at

low intensity.22 Indeed, breed specific differences in SL muscle con-

tent have also been reported, with 40% greater muscle area in stan-

dardbreds compared with Thoroughbreds, and while female

standardbreds have a greater SL muscle content than males, there are

no sex differences in Thoroughbreds.20,21 Further, standardbred hin-

dlimb muscle area content within the SL is greater than in the fore-

limb; however, this is not the case in the Thoroughbred.20

Differences in muscle fibre orientation in the SL have also been

reported, with parallel muscle fibres in the proximal forelimb SL which

become angled more distally, whereas those in the hindlimb remain

parallel throughout the ligament.5,19 By contrast, another study

reported that muscle fibres in the SL inserted onto their neighbouring

collagen fibres at an acute angle; however, it is not clear whether this

was throughout the ligament or confined to a specific region.23 The

functional consequences of differences in muscle content and orienta-

tion are yet to be determined but may be related to injury predisposi-

tion. Indeed, the muscle fibre types found in the SL are predominantly

type I slow twitch fibres which have a short fibre length and high pen-

nation angle, suggesting the ability to generate a large amount of

force while producing little work.23 This implies that the muscle fibres

actively contribute to stabilisation of the forelimb during locomotion,

and therefore the high variability seen may affect SL function.

The interfascicular spaces of the SL also house vascular and neu-

ral components, with blood supplied proximally from the medial and

lateral palmar/plantar arteries, and palmar/plantar metacarpal/tarsal

arteries. The blood to the distal SL is also supplied by the lateral and

medial palmar/plantar digital arteries.24 The SL has an extensive

microvascular network throughout its length, with multiple arterioles

and venules present not only in the interfascicular spaces but also

within the bundles of collagenous fascicles.24 This is in contrast to the

SDFT, which has a relatively avascular zone that is prone to injury,25

suggesting that lack of blood supply does not contribute to increased

risk of injury to a particular region of the SL.

The innervation of the SL is relatively well characterised, largely

due to work undertaken to understand the nerve supply for diagnostic

and treatment purposes, discussed later in this review. The forelimb

SL receives its innervation from the deep branch of the lateral palmar

nerve (DBLPN), which contains fibres from both the ulnar and median

nerve.26,27 Similarly, in the hindlimb, the SL is innervated by the deep

branch of the lateral plantar nerve, which is a branch of the tibial

TABLE 1 Comparison of SDFT and SL composition in the mid-
metacarpal region, measured using standard biochemical techniques
in our laboratory.

Superficial digital

flexor tendon

Suspensory

ligament

Water (%) 64.91 ± 1.64 67.76 ± 1.30***

Collagen (%) 75.81 ± 8.20 65.11 ± 9.16**

GAG (μg/mg) 10.40 ± 4.86 13.30 ± 5.32*

DNA (μg/mg) 0.54 ± 0.11 0.69 ± 0.17***

Pentosidine

(mM/M collagen)

13.83 ± 9.56 17.33 ± 11.65***

HP (mM/M collagen) 737.84 ± 255.58 598.67 ± 231.82*

LP (mM/M collagen) 101.51 ± 108.10 100.23 ± 96.90

Note: For further details of methodology see Thorpe.10 Significant

differences between tissue types are indicated by *: *p < 0.05; **p < 0.01;

***p < 0.001. Data are shown as mean ± SD. N = 32.

SL SDFT

F IGURE 2 Electron micrographs showing fibril diameters in the
SL and SDFT. Scale bar represents 200 nm. For further details of

methodology see Smith.16
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nerve.28 There can be anatomical variations in the DBLPN, with the

number of ramifications entering the SL ranging from 2 to 6, and the

relationship between the DBLPN and surrounding structures, includ-

ing the deep plantar arch and accessory ligament of the deep digital

flexor tendon (DDFT) also varies.29 While this is unlikely to have

implications for normal function, it does have important consequences

for denervation-based treatments for SL injury, as discussed below.

Nerve fibres are found throughout the SL, particularly in the interfas-

cicular spaces in which the presence of neurovascular bundles have

been described.19

Little attempt has been made to characterise cell populations

within the SL, and even cell nomenclature is not well defined, with

cells referred to as fibroblasts, ligamentocytes or desmocytes.30–32

Studies have measured the DNA content of the SL, which gives a

measure of cell number, and varies along the length of the ligament,

increasing from proximal to distal.5 SL DNA content is also greater

than in the SDFT and DDFT,33 (Table 1) suggesting a more cellular

structure. In addition, there is a very similar gene expression profile

between the SL and SDFT, likely reflecting their similar roles as energy

stores. However, there are some differences between structures, with

lower expression of fibromodulin, MMP-3 and -10 in the SDFT

compared with the SL.33 There were no significant differences in gene

expression with ageing in the SL (Table 2).

While some studies have investigated cell behaviour in vitro, the

focus of this research has been to develop treatments rather than under-

stand fundamental cell biology.30,34–36 With recent single cell sequenc-

ing studies in tendon unveiling the complex cellular heterogeneity within

these tissues,37–39 it is important that future studies identify, character-

ise and localise individual cell populations within the SL to understand

the role of each population in ligament health, ageing and disease.

2 | SUSPENSORY LIGAMENT
MECHANICAL PROPERTIES

The mechanical properties of the SL have also been investigated,

although these remain less well defined than those of the distal limb

tendons. Mechanical testing of the entire SL revealed large differ-

ences in regional strain patterns under loading, with greater strains in

the branches compared with the mid-body and proximal regions.

There were also differences in strain response within the mid-body,

with the distal region experiencing higher strains than the proximal

region.40 This is supported by studies that have mechanically tested

small sections of the SL, and shown that strain is significantly greater

in the branches of the ligament than in the mid-body, while elastic

modulus and stiffness are significantly lower.5

Mechanical testing of the body of the SL suggests a more compli-

ant tissue than the SDFT. Data from our laboratory (unpublished)

shows that the elastic modulus is significantly lower than the SDFT

(Figure 3). The ultimate strength of the SL is higher than the SDFT, as

expected for a larger structure; however, the ultimate stress is signifi-

cantly lower (Figure 3).

The forces and strains experienced by the SL in vivo have also

been determined by implanting transducers within the ligament.

Strains of �3.5% were measured in the walk, increasing to �5.5% in

the trot. There was also an effect of ground surface, with greater

strains on pavement than sand.41 SL strains are also affected by shoe-

ing, with increased strains when heel wedges or egg-bar shoes were

applied compared with a neutral shoe.42 In support of in vitro data,

transducer-measured strains within the SL branches are higher than in

the body, reaching �5.4% at the walk and �9.1% at the trot.43 How-

ever, transducer implantation results in alterations in SL mechanical

properties in the days following implantation, reducing stress and

strain measured post-mortem.43 Further, as transducer implantation is

highly invasive, this technique is no longer considered an acceptable

method for measuring tendon and ligament strains.

More recently, noninvasive modelling approaches have identified

that the forces and strains experienced by the SL peak during mid-

stance, with maximum force and strain exceeding 11 kN and 20%

respectively during trotting.44–46 These strains are higher than those

measured in vivo, which may be due to overestimations as a result of

the modelling parameters used.44 There are also differences in strain

between limbs, with higher strains in the forelimb SL, increasing to over

30% in the gallop, whereas strains in the hindlimb remain similar to

TABLE 2 Gene expression profile of SL and SDFT.

Superficial digital
flexor tendon

Suspensory
ligament

Col1A2 34.93 ± 40.90 29.58 ± 27.21

Col3A1 18.56 ± 22.23 19.06 ± 24.95

Col5A1 1.49 ± 2.26 0.69 ± 0.85

Col12A1 9.51 ± 7.81 15.52 ± 24.32

Aggrecan 5.55 ± 10.24 3.95 ± 4.53

Biglycan 63.27 ± 77.84 75.65 ± 170.55

Decorin 1343.42 ± 1713.18 763.11 ± 429.75

Fibromodulin 32.80 ± 37.79 13.28 ± 12.39*

Lumican 48.50 ± 42.14 58.21 ± 47.97

MMP-1 0.03 ± 0.06 0.01 ± 0.06

MMP-3 3.52 ± 4.70 0.70 ± 1.58**

MMP-9 0.43 ± 1.13 0.84 ± 1.70

MMP-10 17.46 ± 25.34 2.23 ± 4.36***

MMP-13 0.16 ± 0.68 0.03 ± 0.06

MMP-23 0.03 ± 0.06 0.03 ± 0.06

TIMP-3 55.08 ± 52.55 48.69 ± 53.51

TIMP-4 0.53 ± 0.85 0.64 ± 0.74

ADAM-12 0.05 ± 0.06 0.03 ± 0.06

ADAM-17 1.21 ± 1.24 0.90 ± 1.02

ADAMTS-2 1.22 ± 1.53 0.63 ± 0.85

Tenascin 1.86 ± 2.77 1.15 ± 1.70

Scleraxis 3.79 ± 5.60 2.51 ± 3.00

COMP 2674.33 ± 3255.43 2111.21 ± 1898.04

Note: For further details of methodology see Thorpe.10 Significant

differences between tissue types are indicated by *: *p < 0.05; **p < 0.01;

***p < 0.001. Data are shown as mean ± SD. n = 32.
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those in the trot.7 Speed within a pace will also likely affect SL loading

environment, with greater tarsal flexion and metacarpophalangeal joint

extension measured in extended trot compared with a collected trot

presumably leading to greater SL strains.47 Strains in the SL can also

vary according to abrupt changes in ground surface, suggesting that

surface inconsistency may contribute to increased risk of injury.48

The effect of training on SL morphology and composition has also

been studied, with no differences in SL cross-sectional area between

trained and untrained horses.49,50 However, collagen content in the

SL is increased and GAG content is decreased in high intensity com-

pared with low intensity training.22 This may indicate an accelerated

loss of muscle tissue within the SL as a result of high intensity exer-

cise. The limited changes in SL properties post-training suggest that

this structure is already highly optimised for efficient function, and lit-

tle enhancements can be gained through conditioning.

3 | EPIDEMIOLOGY OF SUSPENSORY
LIGAMENT INJURY

The majority of research into the epidemiology of SL injury has been

in the Thoroughbred racehorse. In this population, SL injuries are com-

mon with an incidence of 2.7 per 1000 horse starts,51 and a preva-

lence of 3.6%–10%.52–54 Although SL injuries represent a significant

proportion of all injuries (11.5%–21.5%), they occur less frequently

than bone fractures and injury to the SDFT.51,55 In racehorses, 89% of

tendon and ligament injuries are to the SDFT and 11% are to the

SL.56 This may be why, compared with bone fracture and tendon

injury, limited research has been performed to identify risk factors for

SL injury in racing Thoroughbreds.

Horses with subclinical to mild injury of the SL ligament are more

likely to develop a severe injury.57 Abnormality of the SL detected during

a prerace physical inspection was associated with an increased risk of

injury during the race.58,59 Further, horses suffering from an SL injury

prior to the start of their 2-year-old race season have a decreased racing

ability.54 Given that up to 68% of Thoroughbred horses will not race again

after sustaining an SL injury,60 a better understanding of the risk factors

predisposing to SL injury would be of benefit.

Several studies have demonstrated an association between age

and SL injury.57,61 Two-year-old horses have less SL desmitis than

older horses,60 the risk of SL injury in 3- and 4-year-olds is around

twice as high than in 2-year-olds,53 and horses over 5 years old have

a five times higher risk of SL injury than 2-year-olds.53

Other factors associated with risk may include sex, as entire

males have been found to be at greater in one study.53 Whereas

another study found a significant association of SL injury and trainer

but not gender.56 The race type may influence risk, with increased

numbers occurring in chases rather than flat racing and on all-weather

tracks compared with turf.61 By contrast, no seasonal association with

SL injury has been observed.51 An association between mild SL inju-

ries and both the height of shoe toe grabs and distance trained in the

preceding week has been found.57 Likewise, horses that had under-

gone a superior accessory ligament desmotomy to treat an SDFT

injury were at 5.5 times greater risk of developing SL injury than

horses managed nonsurgically.62 These findings suggest that changes

to load distribution and exercise may influence the risk of an SL injury.

SL injury is also a significant problem in other breeds and horses

competing in other disciplines. In standardbred racehorses, SL injury is

the most frequent musculoskeletal injury,63 whereas in racing Ara-

bians and Thoroughbreds, SDFT injury is more common.64 SL injuries

are reported in horses used in barrel racing, although they are less

common than foot pain and osteoarthritis.65 In event horses, SDFT

injuries are more common than SL injuries,66,67 whereas in general

purpose horses, showjumpers and dressage horses the SL is the most

commonly injured site.66 Interestingly, dressage horses have more

hindlimb SL injuries,68 whereas it is predominantly the forelimb SL

which is affected in all other disciplines.53 This may reflect the

increased weight bearing undertaken during collection and more

advanced dressage movements which result in increased loading on

the hindlimbs.68

In other breeds and disciplines, there are fewer studies reporting

the return to work and re-injury rates following an SL injury than in

racehorses. In one study, only up to 25% of Dutch Warmblood horses

and 18% of Standardbreds showed full-functional recovery.69 How-

ever, another study found that following an apical fracture, 56%–88%

of Standardbreds returned to racing, and this was not affected by the

Strain Strain

SL

SDFT

Ultimate load (kN) CSA (mm2)
SL: 16.8 ± 2.5*
SDFT: 12.8 ± 1.3*

Ultimate stress (MPa)
SL: 91 ± 19
SDFT: 131 ± 27

Ultimate strain (%)
SL: 20.2 ± 5.2
SDFT: 14.5 ± 2.6*

SL:192 ± 48***
SDFT:100 ± 16*

Modulus (MPa)
SL: 643 ± 130***
SDFT: 1165 ± 178

Lo
ad

St
re

ss

(A) (B)F IGURE 3 Stylised force/elongation
curve (A) and stress–strain curve (B) for
SL (green) and SDFT (purple) overlayed
with data obtained in vitro from
experimental measurement of mechanical
properties. Data are shown as mean ± SD
(n = 6). Significant differences between
structures are indicated by *: *p < 0.05;
**p < 0.01; ***p < 0.001.
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degree of associated SL damage.70 In leisure horses with SL branch

injuries, 24% returned to the same level of work 2 years after injury,

with 41% of horses returning at a lower level of work, and the remain-

der being unable to return to a ridden career.71

Therefore, while it is clear that SL injuries are a major problem

across multiple disciplines, very few specific risk factors have been

identified.

3.1 | Aetiology and pathophysiology of suspensory
ligament injury

Following injury to the SL relatively little is known about what hap-

pens to the SL matrix or cellular components. Histological studies

have reported changes in collagen fibre organisation and fibroblast

viability.72,73 Ultrasonography has also revealed mineralisation in the

SL branches, although this is not always associated with lameness.74

While most SL injuries occur in the absence of any underlying

condition or known genetic variation, there are certain disorders that

can directly affect the SL and therefore predispose to injury. Indeed, a

significant heritability of 0.05 to 0.17 has been reported for SL injury

in Thoroughbreds in Hong Kong,52 suggesting a genetic component to

injury risk. Furthermore, the SL is affected in some heritable condi-

tions. For example, Quarter horses suffer from an autosomal recessive

condition, Hereditary Equine Regional Dermal Asthenia (HERDA).

Affected homozygous horses have fragile and hyperextensible skin,

which makes the horses unsuitable for riding. However, the ultimate

tensile strength of the SDFT, DDFT and SL are also significantly

reduced.75 An increased risk of SL injury has not been reported in

these horses, but this may be due to their inability to undertake

ridden work.

Degenerative suspensory ligament desmitis (DSLD) is a chronic,

progressive disease that occurs in a range of breeds with an estimated

heritability of 0.22.76,77 Affected horses usually develop bilateral or

quadrilateral lameness and do not improve with rest.78 In addition to

the SL, other tissues are also affected.79,80 The disease is charac-

terised by collagen fibre disorganisation and increased proteoglycan

accumulation and is also known as equine systemic proteoglycan

accumulation (ESPA).79,80 Specifically, increases in aggrecan,

aggrecanases, such as ADAMTS4 (A-disintegrin-and-metalloprotei-

nase-with-thrombospondin-like-motifs 4) and ADAMTS5, and IαI

(inter-alpha-trypsin-inhibitor, a marker of chronic inflammation) have

been observed in affected SLs.81 An abnormal isoform of decorin that

has reduced binding to TGF-β1, has also been found to accumulate in

affected tissues. This is associated with increased TGF-β1 expression

that may affect collagen turnover.80 Altered TGF-β-signalling target

genes have also been reported in cells from affected horses.82

Increased levels of BMP2 have also been reported in SLs and skin

from affected horses.83,84 Recent work has suggested that DSLD is a

polygenic disease,85 but causal variants have yet to be identified. A

genome-wide association study showed enrichment of pathways

associated with ECM homeostasis, proteoglycan metabolism and

hedgehog signalling.77 It is likely that DSLD is a complex disease with

additional risk factors, for example, an association between DSLD and

pituitary pars intermedia dysfunction (PPID) has been reported.86 This

may be due to dysregulation of cortisol metabolism.87 The link

between endocrine disorders and SL injury therefore warrants further

investigation.88

Injury to the SL has also been associated with injuries to other

musculoskeletal tissues. For example, partial transection of the medial

branch of the SL increases the strain on the MC3 lateral condylar

bone surface in vitro,89 suggesting that SL injury may increase the risk

of lateral condylar fracture. Indeed, moderate lesions in SL branches

are associated with an increased risk of suspensory apparatus failure

and metacarpal condylar fracture.57,90 Magnetic resonance imaging

(MRI) has also revealed that most horses with SL pathology have cor-

tical bone pathology.68 Equally, all cases of fatal fracture to the proxi-

mal sesamoid bones, third metacarpal or condyles had partial or

complete lacerations of the SL,91 and at least 70% of horses with

splint bone fractures had desmitis of the SL.92 Furthermore, sesamoi-

ditis in yearlings leads to a five times greater risk of a SL branch injury

when they commence training.93 Sesamoiditis is also associated with

subclinical ultrasonographical changes in the SL branch.94 Damage to

the SL can also occur in the presence of an exotosis on the palmar or

plantar cortex of MC3 or third metatarsal (MT3) bone.95 However, no

association was observed between exotoses on the dorsoproximal

aspect of MT3 and SL damage.96

Therefore, despite the high frequency of SL injuries and their

association with other MSK injuries, there is a paucity of studies to

identify the causal mechanisms and the changes to the matrix and cel-

lular components that occur following an injury.

3.2 | Diagnosis of suspensory ligament pathology

Diagnosis of SL pathology is complicated by the inaccessibility of the

SL for palpation and lack of localising signs; while acute injuries may

be hot with slight swelling and pain on palpation, chronic injuries do

not display these signs.97 Therefore, SL injury is usually diagnosed by

a combination of diagnostic anaesthesia (nerve blocking) and imaging.

When considering the application of nerve blocks, localising pain

originating from the SL can be complex due to anatomical variations in

nerve supply and the presence of surrounding structures in close proxim-

ity, particularly in the proximal region, which may result in inadvertent

infiltration of the carpal or tarsal joints and sheaths.29,98–100 In the hin-

dlimb, anaesthesia of the DBLPN can also abolish pain originating from

more distal structures in the limb, including the tarsal joint.101 More

recent studies have refined diagnostic analgesic techniques, demonstrat-

ing that a single small volume injection adjacent to the DBLPN in the hin-

dlimb is sufficient to provide anaesthesia to the SL; however, the risk of

affecting surrounding structures remains.102,103 In the forelimb, direct

synovial communications between the carpometacarpal joint and the

proximal SL have recently been identified,104 explaining why specific anal-

gesia of the SL remains challenging. These findings highlight the impor-

tance of combining diagnostic anaesthesia with imaging for a definitive

diagnosis of SL pathology.
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Several imaging techniques are used to diagnose SL pathology,

with the most common being ultrasound, and more recently MRI. Sev-

eral abnormalities within the SL are visible on ultrasound, including

enlargement, loss of definition of ligament margins, hypoechoic

regions (either well or poorly defined) and areas with a diffuse reduc-

tion in echogenicity in the proximal SL (Figure 4A).97,107 Lesions

within SL branches are also detectable ultrasonographically, appearing

as anechoic zones, with hypoechoic regions, generally accompanied

by heterogeneous echogenicity and disrupted fibrillar pattern.108,109

Indeed, ultrasonography of nonlame horses revealed that �7% of

Thoroughbreds used for flat racing, �30% of National Hunt horses,

58% of showjumping Warmbloods and 20% of working Quarter

Horses had evidence of abnormalities in the SL branches.110–113

While only 5% of the showjumpers with SL abnormalities went on to

develop clinical signs of SL branch injury within 1 year, more compre-

hensive studies are required to fully establish if these subclinical

abnormalities predispose to injury.

There can be significant inter-operator variability during ultra-

sound assessment of the SL, particularly in the proximal region, which

should be taken into consideration when diagnosing SL disease.114

Ultrasound imaging of the proximal SL is also complicated by the pres-

ence of muscle and fat within this region, and therefore an in-depth

knowledge of SL anatomy combined with multiple ultrasound

approaches is required for accurate diagnosis.28 In addition to imaging

(A) (B)

(C)

(D) (E)

F IGURE 4 Imaging modalities used to
diagnose pathology within the SL. Sagittal
ultrasound image of the proximal forelimb
SL showing a focal hypoechoic region
with fibre disruption (A). Longitudinal
ultrasound of the lateral forelimb SL
branch performed under weightbearing
(B) and nonweightbearing (C). Note the
split which is markedly more apparent
during nonweightbearing examination.
MRI of the proximal forelimb showing a
focal injury to the medial lobe of the SL
(D). Contrast enhanced CT image of the
proximal hindlimb demonstrating
enlargement of the SL accompanied by
increased contrast (E). Images adapted
from Gaschen et al.,105 Werpy et al.106

and Werpy and Denoix28 with permission
from the publishers.
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from the palmar aspect of the limb, it is recommended that medial and

lateral imaging is performed to detect lesions on the edge of the SL,

along with examination using the angle contrast technique with the

limb slightly flexed and nonweightbearing, enabling visualisation of

the origin of the SL and ability to distinguish collagen fibres from mus-

cle and fat.28,115 Indeed, this nonweightbearing technique is also suc-

cessful at visualising longitudinal splits in the SL branches which are

not visible when the horse is bearing weight (Figure 4B,C).106 This

approach has been used to identify an increase in SL abnormalities

between 2- and 4-year-old Quarter horses used for cutting.116 Dopp-

ler ultrasonography, which provides the ability to detect increases in

blood flow, has also been investigated as a diagnostic tool for SL dis-

ease, with studies showing good agreement between Doppler and

B-mode ultrasonography when assessing pathology in SL branches.117

Another recently developed ultrasound-based technique is elasto-

graphy, which is able to estimate tissue stiffness with good reliability

and repeatability between operators when imaging normal SLs.118 In

addition, elastography of pathological SLs showed that acute lesions

were softer than chronic lesions, and stiffness increased with healing.

Elastography therefore has the potential to improve characterisation

and monitoring of SL disease; however, elastography was unable to

detect some small, proximal lesions,119 limiting its applicability for

diagnosis of injuries in this region. Elastography is also yet to be used

for clinical diagnosis of SL disease in the horse.

While these ultrasound-based techniques are successful in identi-

fying a high proportion of SL injuries, MRI provides advances in early

diagnosis of SL injuries (Figure 4D),28 which is likely key for successful

treatment. Development of MRI units able to accommodate a horse limb

has provided significant advances in imaging of the SL, with initial studies

on disarticulated limbs demonstrating an excellent ability to resolve distal

limb structures including the SL.120 Studies comparing MRI and ultra-

sound with histology of the normal SL showed that MRI was able to

detect the interfascicular spaces present within the ligament, which could

not be resolved using ultrasound.2,19 MRI of nonlame horses also demon-

strated large variability in appearance of the SL, particularly in the proxi-

mal region, which should be taken into account during image

interpretation.121 Changes detectable on MRI include SL thickening,

adhesions between the SL and adjacent bony structures, loss of fibre

integrity and the presence of core lesions.105,122 MRI is also able to detect

biochemical changes in the absence of overt structural changes, leading

to earlier diagnosis and potentially improved prognosis123; however, it is

important that normal variations are not mis-interpreted as pathology.124

MRI is particularly useful for diagnosis of proximal SL disease, with differ-

ent weightings allowing resolution of structures often difficult to visualise

on ultrasound or x-ray, including the abaxial margins of the SL.125 Indeed,

direct comparison of ultrasonography and MRI for diagnosis of SL disease

revealed that sonography had fair sensitivity but poor specificity in the

proximal region of the ligament.101 MRI also provides increased sensitivity

when diagnosing suspensory branch injuries, with only one quarter to half

the lesions visible by MRI detectable ultrasonographically.126,127

As well as enabling better diagnosis of lesions within the SL, MRI

is able to simultaneously detect pathologies involving other structures,

with diagnosticians considering MRI most useful in these cases

compared with those only involving the SL.28,128 Osseous contusions

or sclerosis of the palmar cortex of MC3 at the SL origin can be a fea-

ture of SL disease, and the degree of resorption of the palmar cortex

correlated with degree of sclerosis and severity of irregularity in the

margin of the SL.123,129 MRI can also detect adhesions between exos-

toses on MC3 and the suspensory ligament, which are otherwise only

detectable during surgery.130 Other studies have identified the pres-

ence of bone marrow lesions within MT3 at the SL origin associated

with enlargement of the SL and proximal SL pathology.131,132 It is

interesting that irregularities in the dorsal margin of the SL and sclero-

sis of the MC3 have also been observed in contralateral, control limbs,

which may indicate that these changes are not necessarily indicative

of pathology, or conversely that subclinical abnormalities are present

in the contralateral limb of horses diagnosed with SL disease in the

opposite limb.133 Bony abnormalities associated with SL pathology

and mineralisation of SL body and branches have also been diagnosed

using computed tomography (CT).134–136 In addition, CT can detect

enlargement of the SL itself, and, when combined with injection of

contrast agent, can visualise changes in blood flow within the

ligament,28,136 indicating that CT may be a useful diagnostic tool

when MRI facilities are not available (Figure 4E).

Nuclear scintigraphy is another imaging approach that has been used

to detect SL pathology, with scintigraphy used in combination with radi-

ography to diagnose avulsions of the origin of the SL.137 Scintigraphy has

been used with ultrasound to localise lameness when nerve blocks are

unsuccessful,138 but may not detect SL pathology in all cases.139

A large body of work has been undertaken to establish the most

effective technologies and protocols for accurate diagnosis of SL

pathology. Ultrasound remains the mainstay of diagnosis in the field,

while MRI provides increased sensitivity and early diagnosis and so

should be considered in the absence of any abnormalities present

ultrasonographically. Other imaging techniques such as CT and scin-

tigraphy have also been used to diagnose SL disease, generally along-

side other imaging modalities rather than in isolation.

3.3 | Treatment of suspensory ligament injuries

The standard treatment for an SL injury is box rest and controlled

exercise. Modifications to shoeing are also often performed following

an SL injury. Toe wedges reduce the strain placed on the SL,139 and a

wide toe and narrow branches redistribute the pressure from the toe

to the heels.140 However, these adaptations may increase the strain in

other structures in the distal limb.141

As re-injury of the SL following conservative management is com-

mon, this has driven the development of other techniques to try to

improve tissue healing and result in better outcomes.

3.3.1 | Surgical techniques

Surgical interventions to remove damaged tissue have been used for

injuries to the SL branches,142 but large-scale studies are lacking.

8 GUEST ET AL.
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Desmoplasty (surgical splitting of the injured SL) following proximal SL

desmitis has been performed for horses with chronic lameness with

all horses returning to work,143 but long-term follow-up was not per-

formed. Ligament splitting has also been combined with microfracture

in experimental models of proximal SL injury,144 but there are no clini-

cal reports using this approach.

The most common surgical intervention is neurectomy. It has

been proposed that proximal SL desmitis of the hindlimbs can lead to

compression and damage of the DBLPN.145 Neurectomy of DBLPN is

effective in many chronically lame horses,146 with reports demonstrat-

ing that 43%–78% of horses return to their previous, or higher, level

of work.147–149 The variation in success may be related to discipline

and other factors such as conformation.149 The resolution of lameness

may be due to relieving pain in the SL itself, or neuropathic pain

caused by compression of the DBLPN by the inflamed

SL. Although neurectomy does not lead to changes in the size of

the SL,147 histological studies have revealed that it does result in

muscle atrophy of the proximal SL,150–152 which may predispose it

to re-injury. Although neurectomy is widely used, there are no

reports on the long-term re-injury rates following the procedure.

As it may cause limb hyposensitivity, neurectomy may also restrict

the competition use of the horse depending on the rules of the

associated regulatory body.

3.3.2 | Extracorporeal shock wave therapy

Extracorporeal shock waves (ESWs) are pulses of high-energy pres-

sure waves that are used in both human and veterinary orthopaedics.

Early studies on the use of ESW for SL injuries demonstrated possible

improvements in return to work rates in sport/general use horses,

although these studies lacked control groups and compared outcomes

to other published clinical data.153,154 A comparison of ESW therapy

and platelet-rich plasma (PRP) in the treatment of Western perfor-

mance horses revealed that horses treated with ESW were more likely

(3.8 times) to return to work than horses treated with PRP.155 In

humans, ESW has been reported to have an immediate pain relieving

effect but this was not found to be significant in horses with chronic

proximal suspensory desmitis.156

Experimental studies using collagenase-induced SL injuries

revealed significant improvements in ultrasound parameters including

lesion size, fibre alignment score and echogenicity in ESW-treated SLs

compared with untreated controls.157 However, histologically there

was only a difference in metachromasia, which appeared more focal in

the ESW-treated SLs, with no differences in cellular appearance or

collagen III staining.157 ESW therapy also significantly decreased the

size of an experimentally induced lesion and resulted in significantly

more small collagen fibrils along with increased TGF-β1 expression.158

However, the effect of ESW therapy on the normal, healthy SL

revealed that 6 weeks after treatment there was a decrease in GAG

and collagen synthesis while overall DNA content remained

unchanged.159 The tissue also appeared more disorganised with

increased MMP14 and collagen I gene expression.160

Therefore, despite some promising clinical and experimental

results, the effect of ESW therapy on healthy and injured SL matrix

and cellular components remains unclear.

3.3.3 | High-power laser and ultrasound-based
therapeutics

High-power laser is often used in human sports medicine with the

belief that it improves healing and reduces pain. In 150 sport horses

suffering from tendon and SL injuries laser therapy was found to be

safe and treated horses exhibited an overall re-injury rate of

�20%.161 However, without a control group and given the variation

in the initial injury type it is not possible to draw conclusions on the

efficacy of the treatment.

Using a model of SL branch injury, where lesions were created

mechanically in 12 warmblood horses, lesions treated with laser ther-

apy were significantly smaller than control lesions and showed a sig-

nificantly increased Doppler signal during the treatment indicating

more blood flow.162 Laser-treated lesions also showed improved his-

tological scores and lower levels of collagen type III expression.163

However, the mechanical properties of the tissue were not assessed.

There is also a single study reporting the use of low-frequency

ultrasound in the treatment of 23 horses with SL injuries.164 Eighty-

seven percent of the horses returned to work, but re-injury rates were

not reported and no control group was used. Another ultrasound-

based technique that has been investigated for the treatment of SL

pathology is percutaneous ultrasonic debridement; 3 horses that

underwent this procedure had improved lameness scores and all

returned to work.165 However, the small sample number and lack of a

control group in this single study means that this technique requires

further validation as a therapeutic for SL injury.

3.3.4 | Platelet-rich plasma

Biological therapies to aid tissue regeneration by boosting cell number

and/or activity have become increasingly popular over the past

20 years. In addition to their role in blood clotting, platelets release a

wide variety of growth factors that may aid tissue regeneration.

Increasing platelet concentrations to create PRP is relatively simple

and it has therefore been a popular treatment for treating tissue inju-

ries. However, there are few reports that have determined the effect

of PRP on SL injuries.

In vitro, PRP affects gene expression in cultured SL cells with an

increased ratio of collagen type I to collagen type III, increased carti-

lage oligomeric matrix protein (COMP) and decreased MMP-13.35

Furthermore, SL tissue explants cultured with PRP have reduced IL-1β

and increased IL1Ra production.34 While this is suggestive of benefi-

cial changes, larger-scale analyses using global gene expression profil-

ing or proteomics have not been reported.

In vivo, PRP injected into lesions in three horses with chronic SL

injuries did not result in ultrasonographic improvements, but the
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horses were able to return to their pre-injury level of work after

6 months, with no injury recurrence within 20 months.166 In contrast,

a larger study treated 11 horses with acute suspensory branch injuries

with PRP. Although they found all the lesions improved ultrasonogra-

phically, only five of the horses returned to their previous level of

work.167 In racehorses, nine Standardbreds with SL injuries were all

able to return to racing following PRP treatment. However, compared

with noninjured horses they had significantly reduced earnings per

start during the first year after returning to racing and a significant

reduction in the number of starts in the third year.168 Further, control

groups were not used in any of these studies and long-term re-injury

rates were not recorded.

A later study reported that PRP treatment of yearling Thorough-

breds with sesamoid bone inflammation and SL branch injuries

resulted in no significant differences in money earned and races

started between horses treated with PRP and control horses treated

with saline.169 More recently, a larger study on sports horses, involv-

ing 22 control horses and 46 horses treated with PRP for chronic hin-

dlimb suspensory desmopathy, found that significantly more horses

treated with PRP returned to their previous level of activity compared

with the controls.170 However, 25 horses in a third group were trea-

ted with concentrated bone marrow aspirate and these horses were

found to have better lameness scores than the PRP-treated group at

both short- and long-term follow-up.170

3.3.5 | Bone marrow and stem cell-based therapies

Acellular bone marrow aspirate has also been investigated for its ther-

apeutic use. However, these studies have only been performed

in vitro. Acellular bone marrow added to cultured ligament fibroblasts

was found to increase COMP and total protein synthesis to a greater

degree than PRP.30 It was also found to stimulate decorin and COMP

gene expression by SL explant cultures to a greater degree than

PRP.36 Nevertheless, it is considerably more invasive to derive

than PRP and the effect of using acellular bone marrow alone to treat

SL injuries in horses has not been reported.

Whole bone marrow aspirate containing the cellular and acellular

fractions was used to treat forelimb SL injuries of 13 Standardbred and

17 Thoroughbred horses. Approximately 70% of both groups returned to

racing and had 5 or more starts.171 Similarly, a combination of PRP and

bone marrow mononuclear cells was used to treat 13 horses with either

SL or SDFT injuries and 84.6% returned to work.172

These early promising results led to work that focussed on the

mesenchymal stromal/stem cells (MSCs) present in the bone marrow

and other tissues. Umbilical cord blood (UCB)-MSCs were used to

treat 22 warmblood horses with SL injuries, of which 68% returned

to work.173 A more recent study treated Thoroughbred racehorses

with SL branch injuries with allogeneic UCB-MSCs, followed by multi-

ple treatments with autologous BMSCs and 71% of horses returned

to racing for an average of 29.5 months.174 However, none of the

aforementioned studies included a control group or assessed re-injury

rates.

MSCs which have been primed towards the tendon lineage (teno-

genic primed MSCs) express more type I collagen and less smooth

muscle actin than nonprimed MSCs and have better adherence to ten-

don and ligament tissue explants in vitro.175 A case study first

reported the safe application of allogeneic tenogenic primed MSCs for

an SL injury,176 and this was followed by a larger study which treated

68 horses with an SL injury with allogeneic tenogenic primed MSCs in

PRP and found 82.4% had returned to the previous level of perfor-

mance after 2 years and only 17.6% of horses had re-injured. How-

ever, while promising, there was no control group with which to

compare the re-injury rates.177 A recent randomised control trial com-

paring injection of a proprietary formulation of tenogenic primed

MSCs with saline injections showed greater improvement in ultra-

sound and lameness scores in the MSC-treated SLs up to 112 days

post-treatment. Further, follow-up after 2 years showed that re-injury

rates were significantly greater in saline treated compared with MSC-

treated horses.178 A more recent refinement of MSC-based therapeu-

tics focuses on microvesicles from MSCs, which are proposed to con-

tain many of the factors that underpin MSC efficacy in aiding tissue

repair. Microvesicles from adipose-derived stem cells were injected

into the injured SL of one horse and no adverse events were

observed.179 However, no conclusions on efficacy can be made.

3.3.6 | Gene therapy

Gene therapy approaches have also been trialled as a treatment for SL

injuries. Gene therapy involves the injection of expression vectors to

express specific genes beneficial for tissue repair. It therefore offers a

more targeted approach than the use of PRP or MSCs. The injection of a

plasmid expressing vascular endothelial growth factor 164 (VEGF164)

and fibroblast growth factor 2 (FGF2) under the control of constitutive

promoters was performed in 10 horses with SDFT or SL injury.180,181

Eight of the 10 horses were able to return to work with no re-injury dur-

ing the 12-month follow-up. However, only three of the horses had SL

injuries and one of these did not return to work. This study also had no

control group and so, while promising, limited conclusions on effective-

ness can be drawn.

In summary, while many treatments are being used to treat SL

injuries, there is limited data on return to work and re-injury rates.

The lack of control groups, or even robust baseline data, makes it diffi-

cult to determine efficacy and further research should address this

unmet need.

4 | CONCLUSIONS

It is evident that the SL in the horse has evolved into a complex and

heterogeneous structure, reflecting its crucial role in supporting the

distal limb and providing efficient locomotion. Despite these speciali-

sations, the SL is prone to injury and while a variety of treatments are

available, the long-term outcome of these therapeutics remains uncer-

tain. The basic structure of the SL has been characterised, however,
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studies investigating the relationships between cellular and matrix

composition and function, and how these are affected by injury are

lacking. This knowledge gap hampers the ability to develop novel

therapeutics to effectively treat SL injury.
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