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Control of Movement
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Abstract

Mice are key model organisms in neuroscience and motor systems physiology. Fine motor control tasks performed by mice have
become widely used in assaying neural and biophysical motor system mechanisms. Although fine motor tasks provide useful
insights into behaviors that require complex multi-joint motor control, there is no previously developed physiological biomechanical
model of the adult mouse forelimb available for estimating kinematics, muscle activity, or kinetics during behaviors. Here, we devel-
oped a musculoskeletal model based on high-resolution imaging of the mouse forelimb that includes muscles spanning the neck,
trunk, shoulder, and limbs. Physics-based optimal control simulations of the forelimb model were used to estimate in vivo muscle
activity present when constrained to the tracked kinematics during reaching movements. The activity of a subset of muscles was
recorded and used to assess the accuracy of the muscle patterning in simulation. We found that the synthesized muscle patterning
in the forelimb model had a strong resemblance to empirical muscle patterning, suggesting that our model has utility in providing a
realistic set of estimated muscle excitations over time when given a kinematic template. The strength of the similarity between
empirical muscle activity and optimal control predictions increases as mice performance improves throughout learning of the reach-
ing task. Our computational tools are available as open-source in the OpenSim physics and modeling platform. Our model can
enhance research into limb control across broad research topics and can inform analyses of motor learning, muscle synergies, neu-
ral patterning, and behavioral research that would otherwise be inaccessible.

NEW & NOTEWORTHY Investigations into motor planning and execution lack an accurate and complete model of the forelimb,
which could bolster or expand on findings. We sought to construct such a model using high-detail scans of murine anatomy and
prior research into muscle physiology. We then used the model to predict muscle excitations in a set of reaching movements
and found that it provided accurate estimations and provided insight into an optimal-control framework of motor learning.

biophysical models; motor control; muscle patterning; optimal control; reaching behaviors

INTRODUCTION

Mus musculus (Mice) are key model organisms for behav-
ioral studies in neuroscience and physiology, including for
tasks that assay finemotor control andmotor learning. Mice
can perform tasks such asmanipulandum control (1), dexter-
ous reach (2–8), and can learn complex behaviors with and

without training (9–13). Mice are a useful organism for study-
ing human disease, and their behaviors reflect an evolutio-
narily preserved trait applicable to human motor disorders
(14). They also convey a benefit to researchers because of
their accessible genetics and a slate of powerful molecular
tools, which can allow researchers to perturb neural behavior
through optogenetics (15).
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However, despite the utility of mice as amodel organism in
motor learning, there are no high-resolution reconstructions
of the adult mouse forelimb, nor are there any physiological
biomechanical models of themouse forelimb that incorporate
fully developed muscle morphology. Biomechanical models
are useful tools for motor systems and neuromechanics
researchers that can provide detailed insights into muscle
activity and limb kinematics (e.g., fiber length and velocities)
that would otherwise be difficult or impossible to access
through empirical observations. State-of-the-art recording
methods can only measure the activity of 3–4 muscles of the
25þ muscles in the murine forelimb (16, 17). Therefore, we
set out to construct and evaluate a model of the mouse fore-
limb, which would be a valuable tool for researchers studying
dexterous behaviors inmice.

The only currently availablemouse forelimbmodel, devel-
oped recently in a full-body mouse model (18), was based on
mouse embryo data (19), and lacks many of the largemuscles
originating from the scapula. Ramalingasetty et al. (18)
reported that modeling the mouse forelimb was challenging
and identified improving their forelimb model as a remain-
ing challenge for future work. Moreover, reference books on
limb anatomy present two-dimensional (2-D) illustrations of
the limbmusculature (20–22), whichmakes it challenging to
extract accurate locations of the attachment points and the
three-dimensional (3-D) tissue paths from these references
(19). Attachment points have been shown to be the most
important factor in estimating how effective a muscle is in
producing a joint rotation or moment (23). Computing these
quantities directly from dissections is challenging because of
the size of the forelimb muscles, whose tendon insertion
points are separated by as little as tens of microns.

We were able to more accurately identify the muscle
attachment sites and muscle paths than previously possible
using mouse and rat atlas data through the use of light sheet
microscopy. Building on the detailed description of muscle
anatomy integrated into a hindlimb biomechanical model
by Charles et al. (23), we aimed to extend this work by devel-
oping a similar model for the forelimb using imaging data.
We started by scanning and recreating the forelimbs of two
adult mice. Muscles with insertions onto the humerus origi-
nate from sites that span most of the mouse’s trunk and
spine, necessitating imaging of much of the mouse body. We
limited our reconstruction to muscles that had insertions
onto the humerus, radius, and ulna, as reconstruction of
muscles with insertions onto the scapula and those that
inserted onto the hand was infeasible given the resolution of
imaging performed. Once the muscles had been traced and
reconstructed, they were used to construct themusculoskel-
etal geometry of the biomechanical model, including attach-
ments and lines of action, using the OpenSimmodeling and
physics simulation environment (24–26). We used published
results on mouse forelimb muscle architecture to set the
muscle parameters (27). With a model based on highly accu-
rate reconstructions andmouse physiology, we then hypothe-
sized that ourmodel would be well suited to the prediction of
muscle activity during motor behaviors such as skilled
reaching.

To evaluate the utility of themodel, we then aimed to rep-
licate physiological kinematics and predict simultaneously
recorded muscle activity. We analyzed a subset of a data set

comprising thousands of reaches from three mice, which
included both 3-D kinematics and the activity of a subset of
muscles involved in the reaching movements [biceps, triceps
long head, and triceps lateral head electromyography (EMG)].
The empirical kinematics were used as constraints when pro-
ducing muscle-driven synthesized kinematics with optimal
control in OpenSim. The empirical EMG was then used as a
ground truth for comparison against the optimal control EMG
predictions produced in simulation.

We found that optimal control-based simulations using
the model were able to recreate reach kinematics accurately
using synthesized muscle excitations. When examined
against empirical EMG, synthetic EMG closely resembled
the mean activation during kinematically matched reaches.
These results suggest that our model is capable of replicating
realistic reach kinematics and muscle activity. In addition,
we had access to behavioral data that spanned the extent of
learning, thus we performed analyses that reveal that the
optimal control solutions are closer to the empirical solu-
tions (i.e., the patterns used by real mice) as reaching per-
formance improves throughout learning. In other words,
mice may use muscle patterning solutions that more closely
resemble optimal control solutions as they become more
skilled at the task.

More broadly, this model should provide insight into fore-
limb behaviors that would otherwise be inaccessible by
experimental means, and we hope that access to a robust
description of the forelimb’s kinematics, forces, and muscle
activity will advance understanding of mouse behavior. Our
computational tools are available as open-source for
researchers interested in analyzing muscle activity during
mouse forelimbmovements.

METHODS

Animals

All procedures followed National Institutes of Health
Guidelines and were approved by the Institutional Animal
Care and Use Committee at the University of Colorado
Anschutz Medical Campus under Protocol No. 43. Animals
were housed in an environmentally controlled room, kept on
a 12-h light-dark cycle and had ad libitum access to food and
water, except during behavioral training and testing as
described later. Adult C57BL/6 (Charles River Laboratories)
mice of either sex (3 females and 1 male) were used in behav-
ioral experiments. The animals for the light sheet imaging
were part of experiments approved by the Animal Care
Committee of the University of Geneva and by the veterinary
office of the “Direction g�en�erale de la sant�e” of the Canton of
Geneva. Adult C57BL/6 mice of the female sex (2 females)
were used in imaging experiments.

Anatomical High-Resolution Imaging

Accurate prediction of muscle activity during movements
is predicated on a sufficient description of the underlying
anatomy and physiology. With the goal of creating a predic-
tive model, we began by collecting anatomical data. We
obtained 3-D scans of mouse forelimbs and trunk muscula-
ture through large scale light sheet microscopy imaging of
two wild-type female mice (11 wk old). The data set contains
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imaging that captured the left distal shoulder and proximal
forelimb (mouse A), the right distal forelimb and paw
(mouse A), and both forelimbs, shoulders, and trunk (mouse B).
Only the left shoulder, trunk, and proximal forelimb were
reconstructed in mouse B. Mouse A and B are different from
the four mice used in the empirical reaching data set with
EMG. This imaging data set provides detailed anatomical
information to inform ourmodel development.

Mouse and Tissue Preparation

Mice were euthanized via subcutaneous injection of pen-
tobarbital. Transcardial perfusion with saline, followed by
4% paraformaldehyde (PFA) and 0.01% heparin, was per-
formed to preserve tissue integrity. The circulatory system
was then washed with saline solution, and the skin was
removed. To clear the entire mice, a chamber was set up in
the manner that the whole bodies were immersed under the
solution that was perfused in a closed loop through the vas-
cular system using a peristaltic pump. All the following incu-
bation steps were performed through this perfusion setup.
The bone structures of the mice were decalcified by incubat-
ing them in 20% EDTA at 37�C for 10 days, with the EDTA
solution being renewed every 3 days.

Imaging subjects were pretreated withmethanol following
the principle of iDISCOþ tissue clearing protocol (28–30).
The tissue was introduced to a gradually increasing concen-
tration of methanol, starting with 20% and increasing by
20% every hour. The clearing chamber was maintained at
room temperature. After 5 h of exposure tomethanol, the tis-
sue was chilled at 4�C overnight and then bathed in 66%
dichloromethane (DCM) and 33%methanol for 24 h. The tis-
sue was then bathed twice in 100% methanol for 1 h before
being chilled for 1 h at 4�C and then transferred into 5%
hydrogen peroxide in methanol for 48 h. Finally, tissue was
rehydrated through 1 h immersion in 80%/60%/40%/20%
methanol for 1 h per 20% decrement, then transferred to 1�
PBS for 24 h, followed by immersion in a 100 mL of PBS 10�
and 2 mL TritonX-100 solution that was filled to 1 L with dis-
tillate water. Since only the tissue autofluorescence was tar-
geted for imaging, no antibodies were used in this clearing
step process. The tissue was permeabilized with a solution
(500 mL) consisting of 400 mL PTx.2, 11.5 g glycine, and 100
mL dimethylsulfoxide (DMSO). The tissue was bathed in
solution for 4 days, then transferred to a blocking solution of
42 mL PTx.2 (100:2 solution of PBS10x:TritonX-100), 3 mL
donkey serum, and 5 mL DMSO for 3 days. Finally, tissue
was washed with 100 mL PBS 10�, 2 mL Tween-20, 1 mL of
10 mg/mL heparin, and filled to 1 L with distillate water. The
tissue was then re-dehydrated through preparation in 20%/
40%/60%/80%/100% methanol in 1 h steps, then bathed in
100%methanol overnight. Afterward, the tissue was bathed
in 66% DCM and 33% methanol for 4 h, then in 100% DCM
for 15 min twice, in succession, and finally immersed in
dibenzyl ether (Sigma 108014-1KG) solution for imaging.

Imaging Parameters

Dissected mouse limbs were arranged in a prone position
before imaging. Scans were taken with 8.23 μm per pixel
scans at �8 zoom, with 5 μm steps in the z-plane. Imaging
was performed using mesoSPIM (31). Immunostaining was

captured in the green channel (488 nm laser) and was
imaged using mode tiling wizard with an offset by 75% and a
filter set to 530/43. Mouse A’s forearms were dissected and
imaged in their entirety.Mouse B was imaged from the base
of the skull through the joint of the femur and tibia and the
entirety of the depth of the sample.

Anatomical Segmentation and Reconstruction

Muscle segments were manually reconstructed in 3-D. We
found that muscle density and striation was a sufficient
marker of muscles to identify them with light sheet micros-
copy using the tissue autofluorescence imaged in the green
channel. We used imaging of the mouse anatomy and seg-
mented individual muscles into 3-D shape objects using 3-D
Slicer (32) (Fig. 1A). We also segmented the forelimb bones to
obtain landmarks and geometries for use in the model.
Because not every data set had complete data for the entire
forelimb, right and left anatomical datasets were combined
throughmanual alignment in Blender (33). We used anatom-
ical landmarks on the humerus, ulna, and radius to align
muscle reconstructions, as these bones were present in all
three imagining datasets (left and right forelimbs of mouse
A, and whole body of mouse B using the left forelimb). The
reconstructions were scaled according to the radius of the
bones and confirmed visually by examining the degree of
overlap between reconstructions.

Development of a Biomechanical Model of the Mouse
Forelimb

With a detailed set of reconstructions, we next sought to
leverage anatomical descriptions to construct a biomechani-
cal model in OpenSim, a widely used physics-based model-
ing and simulation environment used to study movements
of humans and other species. The anatomical model was
assembled using OpenSim Creator (26). Each individual
muscle’s parameters were derived from optical measure-
ments and from previous parameters in the study by
Mathewson et al. (27) and Charles et al. (23). These were used
to set the biophysical properties of themodeledmuscles. We
used De Groote et al.’s (34) Hill-type muscles within the
model, and opted to ignore complex tendon dynamics (i.e.,
using rigid tendons with no force-length/velocity proper-
ties), both to facilitate the production of a functional model
and because we did not have access to sufficient data regard-
ing tendon physiology purely from imaging data. Our Hill-
type muscles were parametrized by four parameters (maxi-
mum isometric force, optimal fiber length, tendon slack
length, and pennation angle). All these parameters, except
for tendon slack length, were determined experimentally in
the muscle dissection study of Mathewson et al. (27) and
through interpolation from known values when a muscle
was not described in prior literature [i.e., for muscles with
unknown physiological cross-sectional area (PSCA) values,
estimates were performed through the length to PSCA rela-
tionship described by Mathewson et al. (27)]. The tendon
slack length parameter represents the length where a tendon
develops passive elastic force (35); this parameter cannot be
measured through imaging alone and was set using the opti-
mization procedure of Buchanan et al. (36), as is commonly
performed in the field (23), assuming that muscle fibers
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Figure 1. Anatomical reconstruction. A: optical slices of the mouse forelimb in the axial, sagittal, and coronal planes. The mouse arm is oriented in the
prone position. Labels added to highlight prominent muscles as an example of a reconstruction target. B: three-dimensional (3-D) projections of optical
tracing results as a composite across mice. Top shows composite scan, whereas bottom shows the left hand of mouse A to highlight density of wrist-
inserting muscles. Three-dimensional (3-D) projections show morphology and attachment sites of muscles on bones that were used to create biophysi-
cal model. C: biomechanical model (OpenSim) reconstruction developed from the 3-D projections. D: biomechanical model projection on video images
taken from of a mouse reaching.
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remain within 0.5 to 1.5 times optimal fiber length throughout
the joint’s range of motion, which were estimated from both
anatomical constraints and video of mouse behavior. Based
on the muscle paths from the digital segmentation, we used
wrapping surfaces, which are geometric objects in OpenSim,
to constrain themuscles to have realistic paths of action. This
is necessary for the model to produce realistic moment arms
(23). We set other parameters in themuscles such as themaxi-
mum contraction velocity, the activation time constants, and
the force-length curves scaled based on prior work on mouse
physiology (23, see our open-sourcemodel for details). We cal-
culated the physiological cross-sectional area (PCSA) by the
standard formula developed by Alexander and Vernon (37),
that is, muscle volume divided by fiber length. Muscle fiber
pennation angle is set separately in OpenSim models; thus
not directly used in PCSA calculations. Bone volume was
determined in reconstruction and was uniformly multiplied
by a murine bone density scalar (0.00425 kg/cm2), deter-
mined from a literature search for empirical measures (38)
and prior models of the mouse (23), and estimations of the
center-of-mass and inertia. The resulting model has 21
muscles and five bones (along with a composite hand body
segment), with the scapula and clavicle serving as fixed posi-
tion bodies. The model includes four degrees-of-freedom:
shoulder elevation, extension, and rotation, and elbow flexion.
The model is also capable of wrist flexion and rotation, but
these degrees-of-freedomwere fixed during our simulations. A
description of the model geometry is available in Table 1 and
themuscle parameterization in Table 2.

Model Scaling

Individual mice have variable limb dimensions thatmodels
must be altered to accommodate. We accomplished this by
using the scale tool in OpenSim to automatically scale the
mass, length, and muscle parameters of the model to fit the
observed kinematic data originating from a particular mouse
subject. We used DeepLabCut (39) to estimate paw, elbow, and
shoulder markers from video. Our scripts adjusted themarker

positions based on a 3-D skeletal model with estimated limb
lengths (derived from mean intermarker distances). These
adjusted marker positions were then used to scale the
OpenSimmodel to themouse’s proportions.

Surgery for Electromyography and Behavioral
Recordings

Mice underwent two surgeries, ranging 5–7 days apart.
Mice were sedated with a subcutaneous ketamine/xylazine
mixture (10 μL/g) and a local subcutaneous injection of
bupivacaine was delivered at incision sites (80 μL at scalp, 30
μL at forearm). Surgical sites were cleared of hair and sani-
tized with betadine before incision. Animals were monitored
during surgery for wakefulness and breathing rate, and an
injection of one-third of the original sedative was used to
maintain sedation as needed. Surgical sites were wetted with
saline to prevent drying. Rimadyl was injected 24 and 48 h
subperitoneally postsurgery to reduce discomfort (3.33 μL/g).
Enrofloxacin and saline were injected subcutaneously at the
same time (10 mg/kg enrofloxacin, 10 μL/g saline) to prevent
injection and promote hydration. Mice were positioned in a
stereotaxic apparatus (with bite bar and head bars) for the
duration of surgery tomaintain a flat skull bearing.

First, a head plate was attached to the mouse’s cranium
with Metabond dental cement. This was done to enable
head fixation during the experimental training and test-
ing. After recovery, a second surgery to implant the EMG
arrays was performed. The EMG array connector was
attached to the headplate with Metabond dental cement,
and the connecting wires were tunneled beneath the skin of
the arm to an incision site on the proximal forelimb between
the biceps and triceps on the dorsal surface of the arm. A
detailed surgical protocol is available on request. The leads of
the MyoMatrix arrays (Part No. RF-4x8-BVS-5; 16, 17) were
implanted into the biceps, triceps long head, and triceps lat-
eral head using microsurgical needles and attached suture to
secure the lead. The incision site was closed with Ethicon
VICRYL 4-0 suture secured at the knot point with Gluture.

Table 1. Muscle origins and insertions

Muscle Name Origin Parent-Body Origin Coordinates, m Insertion Parent-Body Insertion Coordinates, m

Anconeus Humerus (5.2e-3, 5e-4, 1.07e-2) Ulna (2.4e-3, �2e-4, 8.8e-3)
Anconeus, short head Humerus (3.6e-3, �9e-4, 9.1e-3) Ulna (3.8e-3, �6e-4, 8.3e-3)
Biceps, long head Scapula (8.5e-3, 2.3e-2, 1.2e-2) Ulna (2.1e-3, 4.9e-5, 8.8e-3)
Biceps, short head Humerus (9.1e-3, 1.5e-3, 1.2e-2) Ulna (2.1e-3, 9.8e-5, 8.8e-3)
Brachialis, proximal head Humerus (2.3e-3, 5.9e-5, 8.8e-3) Ulna (2.2e-3, 5.9e-5, 8.8e-3)
Brachialis, distal head Humerus (8.2e-3, 1.4e-3, 1.2e-2) Ulna (2.2e-3, 5.9e-5, 8.8e-3)
Brachioradialis Humerus (4e-3, 6.5e-4, 9.1e-3) Radius (�3e-3, 1.3e-3, 1.2e-2)
Deltoid, medial Clavicle (9.3e-3, 5e-4, 1.3e-2) Humerus (5.5e-3, 1.2e-3, 1.2e-2)
Deltoid, posterior Scapula (8.7e-3, 1.2e-3, 1.2e-2) Humerus (5.9e-3, 1.5e-3, 1.1e-2)
Flexor carpi radialis Humerus (3.4e-3, �9.3e-4, 9.2e-3) Hand (�4e-3, 1.6e-3, 1.2e-2)
Infraspinatus Scapula (1.1e-2, 1.3e-3, 1.2e-2) Humerus (8.3e-3, 1.6e-3, 1.2e-2)
Latissimus dorsi, caudal Spine� (1.8e-2, �3e-3, 1e-2) Humerus (5.5e-3, 1.7e-3, 1.1e-2)
Latissimus dorsi, rostral Spine� (1.5e-2, �7.1e-4, 1.3e-2) Humerus (5.9e-3, 1.5e-3, 1.1e-2)
Pectoralis major, anterior Rib-cage� (9.1e-3, �1.6e-3, 1.7e-2) Humerus (5.3e-3, 1.4e-3, 1.2e-2)
Pectoralis major, posterior Rib-cage� (1e-2, �3.1e-3, 1.5e-2) Humerus (5.5e-3, 1e-3, 1.2e-2)
Pectoralis minor, clavicular Clavicle (1.1e-2, �9.6e-4, 1.3e-2) Humerus (5.6e-3, 1.2e-3, 1.2e-2)
Pronator teres Humerus (3.6e-3, �6.7e-4, 9.3e-3) Radius (8.8e-4, 1.2e-3, 1e-2)
Subscapularis Scapula (1.3e-2, 4e-4, 1.3e-2) Humerus (8.2e-3, 6.2e-4, 1.2e-2)
Triceps, long head Scapula (9.8e-3, 1.2e-3, 1.2e-2) Ulna (4.2e-3, �5.7e-4, 8e-3)
Triceps, lateral head Humerus (8.4e-3, 1.6e-3, 1.2e-2) Ulna (4.1e-3, �4.5e-4, 8.3e-3)
Triceps, medial head Humerus (6.5e-3, 2.5e-4, 1.1e-2) Ulna (3.8e-3, �2.3e-4, 8.4e-3)

�Spinal and rib attachments made to Scapula fixed ground object.
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Behavioral Training and Recording

Mice were placed on the experimental rig 5–7 days post-
EMG implant in a headfix standing position, with forepaws
on a thin bar. Postsurgery, mice were maintained at 80%–

85% of their initial body weight throughout training and test-
ing phases to encourage feeding behavior. During data col-
lection, mice were head-fixed on the experimental rig and
trained to perform a single pellet retrieval task (Fig. 1D and
Fig. 2A) and allowed to retrieve anywhere from 10 to 50 pel-
lets (BioServe Dustless Precision Pellets F0163). Kinematic
measurements and EMG recordings were continuously col-
lected throughout the entire training process, starting from
the first session when the mice were completely naive until
they gradually improved and achieved expertise in the task.
This training period spanned 11 to 26 sessions, with the mice
making their first successful reach (i.e., retrieving a pellet)
between 2 to 5 sessions on the rig.

We collected EMG data from the biceps brachii, triceps
long head, and triceps lateral head in fourmice. Muscle activ-
ity was measured simultaneously with MyoMatrix arrays
(16, 17), using a bipolar INTAN RHD Recording Headstage
(Intan Part No. C3323, RHD 16-channel bipolar þ accelerome-
ter) and captured by an Open Ephys system (40), at 25,000
Hz.Mouse reaching behavior was recorded from two cameras,
spaced 60� apart (recorded at 150 Hz using two FLIR Blackfly
Smodel BFS-U3-16S2M-CS cameras) with one camera captur-
ing behavior in profile, and one rostral to the animal’s resting
position.

Kinematic Reconstruction

Recorded behaviors were processed using the DeepLabCut
3-Dmotion tracking software (39). Postprocessing of the data
parsed the recorded movements into reaching movements,
which included the position of the shoulder, elbow, wrist,
and paw. Although prior studies have captured scapular
motion (41, 42), we were unable to accurately distinguish
movement above the scapulohumeral joint in our video

recordings. We estimated the elbow joint angle from the 3-D
markers. We used the average limb lengths to adjust the
DeepLabCut paw, elbow, and shoulder markers and ensure
that the limb lengths remain constant throughout the video,
which is necessary for accurate tracking by the model.
Because our forelimb model only has rotational degrees-of-
freedom on the shoulder, we could not capture the small
translational movement occurring at the shoulder during
head-fixed reaching. We subtracted the shoulder markers
displacements from the elbow and paw markers to keep
shoulder positional coordinates fixed in our simulations.

EMG Postprocessing

We band-pass filtered the recorded EMG signals from 5 to
500 Hz, rectified the signal, then low-passed further with a
cutoff of 10 Hz (Supplemental Fig. S2). Processed EMG enve-
lopes were normalized to the maximum contraction record-
ing during the session. EMG is usually normalized to the
maximum voluntary contractions in studies with human
subjects (43), and comparison to the inherently normalized
activity in our model necessitated this step. Eachmuscle was
recorded through 4 leads, but only the qualitatively deter-
mined cleanest lead per muscle was used for this study.

Selection of Reaches for Simulation

Our data set spanned the entirety of reach training for four
mice, and because of the progression of learning, there was
natural variance in kinematics performed. We opted to select
only from “expert”mice and to use baseline EMGdatasets that
were derived from similar reaching kinematics, which elimi-
nated one of the mice. We grouped reaches using the 2-norm
metric on 3-D paw kinematics to assess similarity, and then
selected two sets of 10 reaches per mice (n ¼ 3), with each set
having a different kinematic profile (see Fig. 2C). We enforced
expertise by selecting reaches that occurred only after the ini-
tial four sessions of learning, which was a typical epoch for
mice to reach moderate success in reaching. We also com-
pared the optimal control predictions between the early and

Table 2. Muscle parameters

Muscle Name Max Isometric Force, N Optimal Fiber Length, m Pennation Angle, rad Tendon Slack Length, m

Anconeus 0.023 0.003 0.1 0.0002
Anconeus, short head 0.02 0.0015 0.1 0.00015
Biceps, long head 0.093 0.0085 0.1 0.0002
Biceps, short head 0.018 0.005 0.1 0.0005
Brachialis, proximal head 0.066 0.007 0.1 0.0001
Brachialis, distal head 0.067 0.007 0.1 0.0001
Brachioradialis 0.02 0.007 0.1 0.0001
Deltoid, medial 0.069 0.006 0.2 0.0002
Deltoid, posterior 0.068 0.0035 0.2 0.0001
Flexor carpi radialis 0.02 0.007 0.1 0.0001
Infraspinatus 0.065 0.003 0.2 0.0001
Latissimus dorsi, caudal 0.133 0.011 0.36 0.0005
Latissimus dorsi, rostral 0.1133 0.011 0.36 0.0005
Pectoralis major, anterior 0.233 0.008 0.3 0.0002
Pectoralis major, posterior 0.170 0.007 0.3 0.0005
Pectoralis minor, clavicular 0.033 0.0056 0.25 0.0002
Pronator teres 0.02 0.003 0.1 0.0001
Subscapularis 0.34 0.005 0.2 0.0001
Triceps, long head 0.612 0.008 0.3 0.0007
Triceps, lateral head 0.125 0.007 0.17 0.0001
Triceps, medial head 0.16 0.004 0.2 0.0001

NOVEL MODEL OF THE MOUSE FORELIMB PREDICTS MUSCLE ACTIVITY

J Neurophysiol � doi:10.1152/jn.00499.2024 � www.jn.org 1271
Downloaded from journals.physiology.org/journal/jn (087.115.220.011) on May 10, 2025.

http://www.jn.org


late sessions of learning. Early sessions were selected from the
four mice discussed earlier (i.e., including the mouse that did
not achieve expertise status). Ten reaches were selected from
each mouse for the early data set. Early sessions were
restricted to the first three sessions of learned reaching.

Optimal Control

Optimization of synthetic movementsmatching empirical
kinematics was conducted with direct collocation in Moco
(44) as it is well-suited for simulations that track experimen-
tal data (‘inverse simulations’; e.g., see Ref. 45). Direct collo-
cation enforces the equations-of-motion and physiological
relationships as constraints in a nonlinear optimization
problem that solves for the states of the musculoskeletal sys-
tem and the muscle activity over the duration of the simula-
tion. The optimization’s objective is to minimize a cost
function of two terms: one term that is a proxy for effort (i.e.,
the sum of muscle activations squared) and one term that
represents the tracking cost (i.e., the deviation between the

synthesized and the experimental kinematics). The cost
function equation is:

E¼wTpaw þwTelbow þ
X

i
a2i

Here, Tpaw is the 2-norm squared difference betweenmodel
and experimental 3-D paw coordinates. The experimental
coordinates comprised of 100 timepoints during the ballistic
phase of reaching (starting with initiation of movement, e.g.,
deviation from resting, containing peak outward velocity, and
including 15ms following peak achievement of outward reach-
ing position). The same holds for Telbow, which is derived from
tracking of the mouse elbow position. Term ai denotes the
activation of muscle i in themodel andw is a scalar weight set
to 109. We optimized over 2,500 iterations and 100 mesh
points. The simulation was also constrained to start with the
joint angles derived during the scaling of themodel. The opti-
mization would end early if a convergence tolerance of 1e�7

was reached. The optimization typically ran for 10 min on a

Figure 2. A: example video screenshots with schematic elbow and paw marker trajectories. B: a biomechanical model with virtual markers on the elbow
and paw. An optimal control problem is solved to minimize the difference between the virtual and empirical markers (See Supplemental Video 1 for an
example of the model in motion with mucle activations visualized). C: means of six sets of reaches selected for simulation, with the x vs. y (forward vs.
vertical) dimensions plotted on the left and x vs. z (forward vs. lateral) on the right. Blue and purple trajectories originate from mouse 1, green and teal
frommouse 2, and orange and yellow frommouse 3. See Supplemental Videos S2–S7 for paw trajectory comparisons in motion. D: an example of real
and synthetic reach kinematic comparisons formouse 3, along with computed mean and standard deviation of all 60 reaches analyzed (20/mouse, 10
per set) for the empirical and synthesized marker trajectories (black boxplots within blue violins). The z-score of the synthesized markers is largely within
1 standard deviation (see violin plots in blue), and the means per set of ten reaches are all within 1 standard deviation (red dots). Black box plots denote
median (white bar), 25 to 75th percentile distributions (black box), and 10th to 90th percentile distributions (short horizontal black lines).
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computer with specifications listed in Supplemental Table S1.
Rarely, MoCo would not resolve an appropriate kinematic
solution for muscle-driven simulations (in 2 trials), in which
case the cost function was altered tow¼ 1012 then resimulated
with a template guess taken from the set.

We compared range normalized predicted muscle activity
and EMG measurements using the mean absolute error
(MAE) metric at an optimal lag (in a range of –50 to þ 10 ms;
we used a lag of 0 ms for Fig. 3 and the late reach set in
Fig. 4; early reaches had an optimal lag of –50ms in Fig. 4).

Analysis of Model Utility

To determine whether the synthetic muscle excitations
produced by the model provided insight into physiological
activity, we compared the fit of the synthetic data to the
mean muscle activity per set of 10 reaches (6 sets total).
Although we would ideally compare on a per-reach basis, we
found that inherent variability in muscle excitation in the
physiological data made single-reach matching difficult
(Supplemental Fig. S1). We instead asked whether the syn-
thetic data was more informative than knowing the baseline
distribution of the physiological activity by comparing syn-
thetic data to time-shuffled physiological data (Fig. 3C). Data
were randomized across time using a randperm() function of
the time index in MATLAB. Fit to physiological mean was
then computed and themean absolute errors were compared
using a bidirectional t test. Time indexes were restricted to
match those simulated by themodel.

When comparing the early and late simulation datasets,
we found that individual muscle excitation fits were not sig-
nificant. To assess whether there was a gross change in good-
ness of fit, we pooled muscle fits across biceps, triceps long
head, and triceps lateral head into a single comparison,
which is reflected in Fig. 4.

RESULTS

Kinematic Tracking

We tasked the physiological forelimb model to track
recorded DeepLabCut-tracked kinematics using optimal
control algorithms (see Optimal Control). The model was
scaled and then optimized with direct collocation to track
the paw and elbow across the ballistic epoch of the reach
(Fig. 2, A and B; encapsulating the initiation of movement
through peak outward velocity, and terminating 15 ms after
achieving peak outward position). Animals have natural
variance in produced reaching movements and motor con-
trol, so we opted to group six sets of 10 reaches by their kine-
matic similarity across time (Fig. 2C; see Selection of Reaches
for Simulation). We deliberately selected these sets of vary-
ing reaching kinematics to explore the ability of the model to
predict varied motor behaviors. We were able to recreate
limb kinematics with low error, with the majority of synthe-
sized kinematics per timestep falling within 1 standard devi-
ation of the empirical kinematic mean (Fig. 2D, blue violin
plots; n¼ 60 reaches) across the x, y, and z dimensions of the
paw and elbow trajectories (here, x is forward, y is upward,
and z is lateral displacement when viewing motion from a
profile viewwith respect to themouse).

Model Muscle Activity Patterning for Reaching
Movements

We next tasked the model to synthesize muscle activity
during reaching movements with optimal control to predict
the muscle excitations that underlie observed kinematics.
The predictions were not trained with “ground truth” or
empirical muscle activity. As shown in the examples in
Fig. 3A, we observed that the mean synthesized muscle
activity closely resembles empirical muscle activity over the
duration of the reach for all three muscles. Wemeasured the
performance of the model via the mean absolute error (MAE)
of normalized ground truth EMG signals frommodel signals.
The mean muscle excitations produced by the model were
typically within a single standard deviation of the experi-
mental EMG activity (Fig. 3B, red dots in violin plots;
between 50 and 57 of the 60 reaches, depending on the mice
and assayedmuscle).

On a reach-by-reach basis, themuscle excitations produced
by the model across all time points were typically within two
standard deviations of the experimental EMG activity, sug-
gesting that, while still relatively accurate, individual reaches
are more difficult to accurately predict. Paired reach-to-reach
predictions were likely less accurate becausemice were highly
variable in their muscle patterning, even between reaches
with the same kinematic profile (Supplemental Fig. S1). Some
of the observedmuscle patterningmay be energetically ineffi-
cient, more consistent with early learning or motor explora-
tion, which would not be predicted as accurately by optimal
control approaches. In Fig. 3C, we show that the meanmodel
EMG predictions outperformed the shuffled experimental
EMG data (i.e., having the same distribution as the ground
truth EMG; two-sided t test, biceps P ¼ 6.4e-7, triceps long
head P ¼ 1.5e-6, triceps lateral head P ¼ 6.2e-3; P values were
Holm–Bonferroni corrected for multiple comparisons, n¼ 60
shuffled trials and six synthesizedmeans).

Mouse Motor Learning and Optimal Control

The progression of reach kinematics andmuscle patterning
inmice learning a novel task is a relatively understudied phe-
nomenon, especially given the paucity of experimental
approaches to studying whole limbmuscle activity. We lever-
aged our model’s explanatory power to investigate the possi-
bility that mice approach an optimal motor control solution
during the progression of training by evaluating optimal con-
trol predictions during early and late sessions of training. In
Fig. 3, we compared the optimal control predictions with
reaches selected from expert mice (i.e., after at least 5 sessions
of successful reaching). In Fig. 4, we compared how the opti-
mal control predictions varied when the reaches were chosen
in the early (i.e., in the first 3 sessions after the first successful
reach to pellet) or late stages of learning. We found that mice
tended to usemuscle excitation patterns that convergedmore
closely to those derived from optimal control in the later
stages of learning. These results were significant when pool-
ing the data across all recorded EMG channels but not on
individual channels, likely because of our small sample size
(early n ¼ 4, late n ¼ 6 for means comparisons, early n ¼ 40,
late n ¼ 60 for trial-to-trial comparisons shown in Fig. 4.
Comparison of trial-to-trial data was compared with a two-
sided t test with a P value of 2.4e-5).
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Figure 3. A: comparisons of synthesized muscle excitations and experimental electromyography (EMG) activity. Curves showmeans and standard devia-
tions (line and shaded region) of 10 reaches with similar experimental elbow and paw trajectories that were chosen from mouse behavior dataset. The
mean synthesized excitations are shown in thick red for biceps long head, thick cyan for triceps long head, and thick blue for triceps medial head com-
pared with the base lateral head activity. B: violin plots including the entire dataset of 60 reaches. The mean synthesized muscle activity lies largely
within 1 standard deviation of mean experimental muscle activity (red dots). On a reach-by-reach basis, the synthesized muscle activity lies largely within
a z-score of 2 standard deviations (blue violin plots). Black box plots denote median z-deviation (white bar), 25 to 75th percentile distributions (black
box), and 10th to 90th percentile distributions (horizontal black line). C: a comparison of mean absolute error between time-shuffled physiological EMG
data and synthetic excitation means to the real mean of the tracked data. Synthetic excitation means have lower mean absolute error (MAE) than the
time-shuffled data in all three muscles recorded (two-sided t test, biceps P¼ 6.4e-7, triceps long head P¼ 1.5e-6, triceps lateral head P¼ 6.2e-3. �P val-
ues were Holm–Bonferroni corrected for multiple comparisons). Black box plots denote median (red horizonal bar), 25 to 75th percentile distributions
(black box), and 10th to 90th percentile distributions (short horizontal black lines and stems).
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DISCUSSION
Mouse models are widely used to study the neural control

of movement, motor disorders, muscle physiology, and
develop novel brain-computer interfaces and neurotechnol-
ogies. Despite the widespread use of mice in the health sci-
ences, the only available biomechanical model of the mouse
forelimb is based largely on educated guesses, which could
lead to inaccurate kinematics and muscle activity predic-
tions. We used high-detail anatomical reconstruction from
large-scale light sheet microscopy scans to develop one of
the first physiological biomechanical model of the mouse
forelimb in terms of musculoskeletal geometry and muscle
architecture (27). This manuscript was published in tandem
with a similar model developed by DeWolf et al. (46), which
used micro-computer tomography (CT) to develop a two-
armed murine model. Though there is some disagreement
in terms of muscle insertion locales between our study and
the DeWolf model, it remains to be seen how much impact
subtle variations in modeled anatomy has on predicting
physiological muscle excitation patterning, and will likely
be the subject of ongoing research. Traditional dissection
methods were deemed impractical to determine the muscu-
loskeletal geometry because of the small size of the mouse

forelimb, especially in determining the attachment points of
the tendons of the elbow. We used this biomechanical model
with optimal control to synthesize muscle coordination pat-
terns that produce reaching movements in simulations that
match experimental kinematics. Accurately predictingmus-
cle activity is challenging because of the infinite possible
coordination patterns consistent with the tracked experi-
mental kinematics and the high physiological variance in
the patterns observed in real mice (i.e., for very similar kine-
matics, mice often use very different muscle patterning
strategies, some of which may be energetically costly, have
high or low cocontraction, be robust to disturbances, etc.;
Supplemental Fig. S1) and in human studies [Feldotto et al.
(47)]. Our optimal control cost function only has terms to
encourage low energy (via the sum of muscle activations
squared proxy) and producing kinematics consistent with
experimental kinematics. Therefore, we would not expect
the optimal control predictions to closely match the experi-
mental muscle activity on a reach-by-reach basis because of
the high variability in the experimental muscle patterning
data. Nevertheless, we found that the mean optimal control
muscle activity predictions have a strong resemblance with
the mean empirical muscle activity (Fig. 3A). These results
held for all three recordedmuscles with EMG (biceps, triceps
long head, and triceps lateral head). To the best of our knowl-
edge, this is among the earliest works in any species, includ-
ing humans [though see Feldotto et al. (47) for similar results
in leg movements], showing a resemblance between synthe-
sized and experimental muscle activity for three-dimen-
sional reachingmovements with a biomechanical model.

Neuroscience experiments are sometimes limited in scope
by the difficulty of simultaneous recording of behavior, neuro-
logical signals, and, in some cases, muscle activity. Multisite
muscle recordings are limited to accessible sites, and this limi-
tation is exacerbated in mice, where access to and implanta-
tion of manymuscles is often infeasible. This model is meant
to supplement experiments where knowledge of muscle activ-
ity patterning could bring insight about the nature of neural
activity patterning. Scientists with behavioral data can extract
an estimate of whole forelimbmuscle activity from themodel
given a set of kinematics over time. Tracking of mouse kine-
matics has become broadly accessible through the advent of
pose-based tracking software like DeepLabCut, which was
used in the present study to monitor limb position during
reaching behaviors (39). The conjunction of tracking and
synthesis of whole forelimb muscle activations promises
to expand research into behavioral control significantly.

There are several extensions to our biomechanical model
and computational tools possible for future work. Our com-
putational tools assume that no EMG is available during the
experiments. If EMG is collected during the experiment, the
optimal control problem can be solved to predict the muscle
activity of muscles without EMG recordings while matching
experimental EMG and kinematics data in tracking simula-
tions (44). It is also possible to change the cost function in
the optimal control problem and produce predictive simula-
tions that do not require any experimental data, including
kinematics, by specifying goals constrained only to end-
point or end-state of the limb. The optimal control problem
could then predict the reaching kinematics and muscle
activity when there is a change in the task (e.g., a new pellet

Figure 4. A comparison of the utility of the simulated muscle excitations in
predicting electromyography (EMG) during early or late training sessions
(i.e., the first three sessions after the first successful reaches being early
and sessions later than four sessions after the initial successful reach
being late.). Late reaches, on bulk, have a significantly lower mean abso-
lute error than early sessions (two-sided t test, P ¼ 2.4e-5, early n ¼ 40,
late n ¼ 60, �Significant) for predicting trial-to-trial EMG activity. Black box
plots denote median (red horizonal bar), 25 to 75th percentile distributions
(black box), and 10th to 90th percentile distributions (short horizontal black
lines and stems).
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location) or limb biomechanics (e.g., a weight placed on the
forelimb). This model might also be used to assay disease
states to expand on known motor symptoms, such as
enforced variability in end point accuracy as seen in cerebel-
lar disease (48), impaired kinematics in Parkinson’s disease
(49), and for assaying kinematic impairments in stroke vic-
tims, such as forced variation in muscle coordination pat-
terns (41, 42, 50). Analysis of specific motor coordination
patterns in murine models of disease has heretofore been
impossible to fully measure. Although this model’s utility in
describing disease states will require validation, the opportu-
nity to fully describe the state of the forelimb may grant
insight intomuscle patterning and synergies that were previ-
ously not described andmay suggest rehabilitative activities
that act on impactedmotor structures (51).

Although the model evaluation in this study focuses on
reaching movements, which are commonly used to assess
motor control across species, the insights gained extend
beyond this specific task. Reaching movements provide a
well-studied framework for understanding motor coordina-
tion, but motor systems are capable of generating numerous
possible muscle coordination patterns for any given move-
ment (52). Optimal control chooses the muscle excitation
pattern that achieves task constraints while minimizing a
proxy for effort or energy (e.g., the sum ofmuscle activations
squared) and possibly other terms (53). We apply optimal
control to predict an energetically efficient muscle activity
pattern that achieves the reaching kinematics task. This
study is focused on the ballistic phase of reaching move-
ments, and we did not model the grasping phase during
the reach as we would have needed to include the muscles
that control the wrist and fingers in the model and simu-
late interaction with the pellet. One additional discrep-
ancy between our simulation and the empirical reach is
that mice, before starting their reach, rested their paws on
a bar, which we did not simulate (and may impact the pre-
dicted muscle activity at the start of the ballistic phase, see
Fig. 3A biceps for an example of elevated EMG activity
likely generated to offset gravity not present in the physio-
logical experiment).

Our simulations were evaluated with head-fixed mouse
reaching. Using the biomechanical model in free-reaching
mice may be less accurate because it has more significant
scapular movements, which we assume to stay fixed in our
model, but which can be measured (42). In future work,
researchers could either add a degree-of-freedom and a joint
motor to allow translational movement of the scapula or
incorporate the muscles that control the scapula as a free
body in the biomechanical model. The optimal control solu-
tions produce open-loop muscle coordination patterns that
are not responsive to noise or changing task or environmen-
tal constraints. It is, however, possible to develop closed-
loop controllers to track the optimized trajectory or to
develop feedback controllers with reinforcement learning or
introduce stochastic noise representing imprecise neural
controls (e.g., see Ref. 54). Finally, we generalized ourmuscle
parameterization to past work and observations from other
small mammals (55), but the model would certainly benefit
from a thorough investigation of the murine forelimb’s
muscles through dissection and testing, which was beyond
the scope of our study.

Wemake our computational tools freely available as open-
source. We have written custom code to convert our OpenSim
model into the MuJoCo physics simulation environment (56)
included in the project repository at SimTK.org. Although the
model is available in MuJoCo, the computational tools for
optimal control are based in OpenSim; therefore, MuJoCo
users will need to develop their own code to produce the sim-
ulations with the model. Although the model evaluation in
this study focuses on reaching movements, our tools can be
used to predict muscle activity in other forelimbmovements.
Users of our computational tools should note that the optimal
control predictions are expected to more closely resemble
empirical muscle activity on a mean basis rather than on a
trial-by-trial basis and carry the assumption of closely
matched kinematics. Furthermore, the model predictions
are expected to improve when mice have learned to per-
form the task well as opposed to when mice are still in the
early stages of learning. Nevertheless, the model predic-
tions in the early stages of learning are still within one
standard deviation of empirical results and represent a sig-
nificant improvement over randomized guesses from the
naturalistic EMG distribution. An exciting use case for our
biomechanical model is to control it with artificial neural
networks and relate the activity in these networks with
empirical neural activity from system neuroscience labora-
tories (57). We have also provided our anatomical data and
reconstructions on Zenodo (see DATA AVAILABILITY), which
contain a number of distal forelimb muscles whose attach-
ment points were too minute to clearly identify, but which
may be of interest to researchers examining dexterous
movement of the wrist and fingers. Combining our compu-
tational tools and experimental data could lay the founda-
tions for future studies elucidating the principles that drive
the control of movement.

DATA AVAILABILITY
The OpenSim model and scripting tools used in the study are

available at https://simtk.org/projects/mouse_arm2024. The ana-
tomical imaging and reconstruction files are available at https://
zenodo.org/records/14206069.

SUPPLEMENTAL MATERIAL
Supplemental Figs. S1 and S2, Supplemental Table S1, and

Supplemental Videos S2–S7: https://doi.org/10.18735/sayr-8m76.
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