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Abstract: Background/Objectives: Finding single nucleotide polymorphisms (SNPs) and
candidate genes that influence the expression of key traits is essential for genomic selec-
tion and helps improve the efficiency of poultry production. Here, we aimed to conduct
a genome-wide association study (GWAS) for egg production traits in an F2 resource
population of chickens (Gallus gallus). Methods: The examined F2 population was pro-
duced by crossing two divergently selected breeds with contrasting phenotypes for egg
performance traits, namely Russian White (of higher egg production) and Cornish White
(of lower egg production). Sampled birds (n = 142) were genotyped using the Illumina
Chicken 60K SNP iSelect BeadChip. Results: In the course of the GWAS analysis, we
were able to clarify significant associations with phenotypic traits of interest and eco-
nomic value by using 47,432 SNPs after the genotype dataset was filtered. At the threshold
p < 1.06 × 10−6, we found 23 prioritized candidate genes (PCGs) associated with egg
weight at the age of 42–52 weeks (FGF14, GCK), duration of egg laying (CNTN4), egg
laying cycle (SAMD12) and egg laying interval (PHF5A, AKR1B1, CALD1, ATP7B, PIK3R4,
PTK2, PRKCE, FAT1, PCM1, CC2D2A, BMS1, SEMA6D, CDH13, SLIT3, ATP10B, ISCU,
LRRC75A, LETM2, ANKRD24). Moreover, two SNPs were co-localized within the FGF14
gene. Conclusions: Based on our GWAS findings, the revealed SNPs and candidate genes
can be used as genetic markers for egg weight and other performance characteristics in
chickens to attain genetic enhancement in production and for further genomic selection.

Keywords: chicken (Gallus gallus); genome-wide association study (GWAS); single
nucleotide polymorphisms (SNPs); candidate genes; egg performance

1. Introduction
The search for, and identification of, gene variants that underlie the manifestation of

selection-significant traits in livestock [1,2] is one of the prerequisites and main goals of
genomic selection that aims to improve animal production efficiency [3–5]. In egg poultry
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farming, much attention is paid to the phenotypic and genetic indicators characterizing
the productive potential of laying hens [6,7]. Finding a set of characteristics that indicate
increased egg yield through targeted selection is crucial [8,9], and some of the main criteria
for selecting poultry breeds, lines and crosses for industrial egg production are such
traits as egg number (EN) and egg weight (EW) [10–12]. The history of the creation and
improvement of layer breeds is directly related to selection for the expression of these
traits [13,14]. EN produced over a certain period of time per laying hen is an important
indicator relevant to the egg industry in terms of profitability and economic efficiency [15].
EW is a primary trait in relation to commercial quality of eggs [16], which determines the
sale value of this poultry produce. In addition, larger eggs tend to have higher consumer
demand [17].

EN laid by a hen during a certain laying period is largely determined by such char-
acteristics as age at first egg (AFE), duration of egg laying (DEL), and egg laying cycle
(ELC) [18,19]. Since the initiation of sexual maturity in females coincides with the start
of egg laying, AFE is regarded as an indicator that enables prediction of both the bird’s
reproductive capacity and egg performance [20–22]. Selection of poultry for this trait when
developing industrial egg lines and crosses is of particular significance, since a homogeneity
of an industrial population of laying hens in terms of the onset of egg laying makes it
possible to synchronize the duration of productive use of the layers and enhance the overall
egg productivity of the flock [23]. Length of laying cycles and egg laying interval (ELI)
directly affect the number of eggs produced by hens during their productive period. Birds
with higher egg production are usually characterized by longer laying cycles and shorter
periods without laying [19].

The productive potential of layers and its implications for poultry production condi-
tions depend on many factors such as genotype [24–28], feeding [29–33] and maintenance
conditions [34–37], with the latter including lighting and indoor microclimate, among
others [38,39]. Some poultry species have seasonal egg laying, e.g., turkeys [40] and
geese [41,42].

The genetic basis of egg performance traits in poultry females has been described in
many studies [43–47]. With the advent of high-density single nucleotide polymorphism
(SNP) arrays [48], genome-wide association studies (GWAS) have begun to play an essen-
tial role in pinpointing previously undetected genetic associations of SNPs and candidate
genes with phenotypic traits in chickens [43,49–53], geese [54], quails [55] and ducks [56,57].
Nowadays, GWAS is a molecular tool of choice to investigate genetic blueprints and deter-
minants for various chicken traits of interest, e.g., feed efficiency and growth traits [58], feed
conversion ratio [59], muscle fiber and fat traits [60,61], body size [62], semen volume [63],
beak deformity [64], response to Newcastle disease [65], and quantitative trait loci (QTL)
for ascites syndrome [66], among many others. In our earlier studies using the Russian
White (RW) layer breed and the Cornish White (CW) meat breed (Figure 1), we explored
putative genes and selective sweeps under strong selection pressure for egg production [67]
and identified SNPs and candidate genes associated with AFE in F2 hens from a resource
population generated by crossing these two breeds [23].

The objective of the present investigation was to extend the above previous works
by focusing on SNP discovery and candidate gene identification associated with egg
production traits in hens. These traits included AFE, EN, DEL, ELC, ELI, and EW at
18–28 (EW1), 29–41 (EW2) and 42–52 (EW3) weeks of age. To achieve this aim, a GWAS
for egg production traits in F2 resource chickens from a cross between the RW (of higher
egg production) and CW (of lower egg production) breeds (Figure 1) was conducted using
whole-genome genotyping (WGG) data.
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Figure 1. Initial parent breeds and F1 hybrids used to obtain the F2 model resource chicken population.

2. Materials and Methods
2.1. Experimental Birds

The original breed chickens were reared at the L. K. Ernst Federal Research Centre
for Animal Husbandry (LKEFRCAH), hatched from eggs purchased from the Russian
Research Institute of Farm Animal Genetics and Breeding (Pushkin, Russia). The F2
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resource population’s chickens were obtained and raised at the LKEFRCAH (Figure 1), and
their DNA was sampled.

To produce the F2 chicken resource population, two breeds divergently selected
and with contrasting egg production indicators were used, i.e., RW [48,50,68,69] and
CW [67,70,71]. At the first stage, based on WGG data and in order to exclude close
relationships, individuals of the original parental breeds were divided into two families
(F0_1 and F0_2; Figure 1), each consisting of five CW females and one RW male. Each
family produced F1 hybrids (n = 36) through interbreed crosses, which were then selected
for further study. These F1 interbreed hybrids were utilized to produce F2 individuals. For
this purpose, seven families (F1_1–F1_7; Figure 1) were formed, each of which included
one F1 male and three F1 females that were not close relatives. The resultant F2 offspring
(n = 142 females; groups F2_1–F2_7; Figure 1) served as a model resource population
for additional molecular genetic research aimed at identifying SNPs linked to egg yield
indicators of laying hens.

The temperature of the brooders was gradually lowered from 34 ◦C (in the first
few hours after hatching) to 23 ◦C until the chicks were three weeks old, at which point
they were moved to floor maintenance. F2 progenies were housed according to their age,
which included regular lighting, enough ventilation (to prevent moisture, drafts, and gas
pollution), and permanent availability to fresh water and commercial complete compound
feed as described elsewhere [72,73]. At the age of 15 weeks, the hens were moved to
individual cages to record egg productivity indicators.

2.2. Performance Data

The 142 F2 females of the resource population were phenotyped for egg production pa-
rameters: AFE, EN, DEL, ELC, ELI, plus average EW1, EW2 and EW3. The egg production
parameters of each female were recorded individually in the period from the beginning of
egg laying to the age of 52 weeks. EN was calculated in the age period from 18 to 52 weeks.
ELC was estimated as the period (i.e., number of days) of continuous egg laying, and ELI as
the period of absence of egg laying between two ELCs. Eggs were weighed on a laboratory
scale. The average EW values were calculated in the first (EW1), second (EW2) and third
(EW3) periods of egg laying. The same egg performance indicators (except ELC and ELI)
were recorded for chickens of the original parental breeds, i.e., RW (n = 20) and CW (n = 15).

2.3. Sampling and DNA Isolation

Feather pulp was utilized for DNA extraction that was performed using the Syn-
tol animal tissue DNA extraction kit (Syntol, Moscow, Russia). The concentration of
DNA solutions was measured using a Qubit 3.0 Fluorimeter (Thermo Fisher Scientific,
Wilmington, DE, USA). The NanoDrop-2000 device (Thermo Fisher Scientific) was used to
estimate the OD260/280 ratio in order to verify the isolated DNA’s purity.

2.4. Genotyping and Quality Control of SNPs

WGG of hens was conducted using the Illumina Chicken iSelect BeadChip DNA
array containing ~60K SNPs. In the R-4.0 software environment [74], the PLINK 1.9
software package [75,76] was used to carry out quality control and filtering of WGG data
for every sample and every SNP. The following program filters were applied: --mind 0.10,
--geno 0.10, --maf 0.01, --hwe 10−6. Following SNP pruning, 47,432 SNPs were used in
the subsequent analysis.

2.5. Principal Component Analysis

Using PLINK, principal component analysis (PCA; [77]) was carried out based on the
variance-standardized relationship matrix, and the R program ggplot2 was employed
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to plot the findings [78,79]. In the R-4.0 software environment [74,80], the data files
were created.

2.6. Genome-Wide Association Studies

To reveal SNP associations with egg production parameters in F2 resource population
hens, regression analysis in PLINK 1.9 was executed. The significance of SNP influence and
chicken genome regions were identified and evaluated using the Bonferroni null hypothesis
test with a p-value cutoff (p < 1.06 × 10−6). The qqman software (version 0.1.9) [81] in the
R programming language [82] was used to visualize the data.

The Genome Data Viewer in the NCBI chicken databases [83] and the chicken (G. gallus;
GGA) reference genome assembly GRCg6a [84] were used to search for putative genes
located in the vicinity of the detected SNPs, including 0.2–Mb flanks on both sides. To obtain
comprehensive information about SNPs found within or close to the identified candidate
genes, the web-based Ensembl Genes release 106 database and the Ensembl BioMart data
mining program [85] were used. The Ensembl BioMart data mining tool and Database
for Annotation, Visualization, and Integrated Discovery (DAVID Knowledgebase; version
DAVID 2021 (December 2021; v2023q4, quarterly updated)) [86,87] were utilized to conduct
functional annotation and gene ontology (GO) term enrichment analysis for major candidate
genes. The search for associations of identified SNPs and potential genes with selectively
significant traits in chickens identified in other studies was carried out in the Animal QTLdb
(https://www.animalgenome.org/cgi-bin/QTLdb/index (accessed on 21 April 2025)) and
Chicken QTLdb (https://www.animalgenome.org/cgi-bin/QTLdb/GG/index (accessed
on 21 April 2025)) databases. All required database data were extracted to build GRCg6a
(https://www.animalgenome.org/QTLdb/doc/genome_versions#chicken (accessed on
21 April 2025)) in .bed format, .gff and .sam formats.

3. Results
3.1. Phenotypic Data and Population Stratification

Table 1 presents descriptive statistics characterizing the distribution of values estab-
lished for the egg productivity traits studied in F2 resource population hens. A higher
variability of values was established for a number of traits, e.g., ELC and ELI had coeffi-
cients of variation up to 33.4 and 41.4%, respectively.

It should be noted that the obtained F2 resource population hens had a tendency
for higher variability in the phenotypic expression of the studied egg productivity traits
compared to the original parent breeds (Table 1).

The distribution of the examined F2 resource population was displayed by PCA across
several clusters. In the projections of first component (PC1)–second component (PC2) and
PC1–third component (PC3), differentiation of the studied population into four groups was
noted, as follows: the first grouping included F2_1, F2_4, F2_5 and F2_6 progenies, the
second grouping included F2_2 individuals, the third grouping included F2_3 chickens,
and the fourth grouping included F2_7 offspring. These data are shown graphically in
Figure 2a,b.

Consequently, we conducted a GWAS trial employing the first three PCs (i.e., PC1,
PC2 and PC3) as covariates in light of the observed population stratification, or its
disclosed structure.

https://www.animalgenome.org/cgi-bin/QTLdb/index
https://www.animalgenome.org/cgi-bin/QTLdb/GG/index
https://www.animalgenome.org/QTLdb/doc/genome_versions#chicken
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Table 1. Descriptive statistics for egg production indicators 1 in F2 resource population hens as
compared to the original parent breeds.

Trait
F2 Population (n = 142) Russian White (n = 20) Cornish White (n = 15)

Mean ± SD CV, % Mean ± SD CV, % Mean ± SD CV, %

Age at first egg, days 131.6 ± 18.4 13.9 144.5 ± 6.3 4.4 180.6 ± 17.8 9.9
Duration of egg laying, days 232.4 ± 18.4 7.9 220.5 ± 6.3 2.9 184.4 ± 17.8 9.6

Egg number for 238 days 126.2 ± 31.6 25.1 150.3 ± 10.8 7.2 82.0 ± 11.1 13.5
Egg laying cycle, days 2.4 ± 0.8 33.4 N/A N/A N/A N/A

Egg laying interval, days 2.4 ± 1.0 41.4 N/A N/A N/A N/A
Egg weight at age of 18–28 weeks, g 43.0 ± 3.5 8.2 44.1 ± 3.2 7.2 N/A N/A
Egg weight at age of 29–41 weeks, g 50.8 ± 4.7 9.3 50.6 ± 4.3 8.7 52.2 ± 4.2 8.0
Egg weight at age of 42–52 weeks, g 57.8 ± 3.9 6.7 55.1 ± 2.4 4.3 63.1 ± 4.6 7.4

1 SD, standard deviation; CV, coefficient of variation; n, number of females; N/A, not available due to unavailability
of individual trait recording.

(a) 

Figure 2. Cont.
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(b) 

Figure 2. Principal component analysis (PCA) for the F2 resource chicken population. (a) PCA
performed in the projection of the first (PC1) and second (PC2) components. X-axis, PC1; Y-axis, PC2.
(b) PCA performed in the projection of the PC1 and third (PC3) components. X-axis, PC1; Y-axis,
PC3. Different colors are used to represent members of certain groups.

3.2. Genome-Wide Association Analysis Output

The obtained phenotypic data on egg production parameters in F2 resource population
hens (Table 1) were used for the subsequent GWAS. Figure 3 presents the respective
GWAS results.

The completed analysis discovered six SNPs associated with EN in hens of the re-
source population and EW in different periods of their egg laying, and 45 SNPs associated
with the studied DEL and ELI parameters at the level of established significance value
p < 1.06 × 10−6 (Supplementary Table S1). These SNPs were identified on 19 of 28 chro-
mosomes explored. The maximum number of significant SNPs was localized on GGA1
(14 SNPs), and the minimum (1 SNP) on GGA5, GGA6, GGA8, GGA9, GGA11, GGA12,
GGA15, GGA19, GGA25, GGA27 and GGA28. No significant SNPs were identified on
chromosomes GGA7, GGA16–GGA18, GGA20, GGA21, GGA23, GGA24 and GGA26 for
any of the studied parameters.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 3. Manhattan plots resulting from GWAS for the studied egg production traits in the F2

resource chicken population. (a) Duration of egg laying from age at first egg to 52 weeks of age;
(b) egg laying cycle; (c) egg laying interval; (d) mean egg weight at 18–28 weeks of age; and (e) mean
egg weight at 42–52 weeks of age. Manhattan plots: distribution of single nucleotide changes across
28 chicken chromosomes (autosomes) at the significance level (−log10(p)) based on the traits’ pre-
dicted probability values. The only purpose of color-coding dots is to show chromosomal segregation.
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Information about the distribution and quantity of significant SNPs found on chro-
mosomes, taking into account each specifically studied egg productivity indicator in F2

resource population hens, is shown in Table 2.

Table 2. Chromosomal distribution of significant SNPs (p < 1.06 × 10−6) associated with egg
production indicators in F2 resource population hens.

Trait No. of SNPs Chromosomes 1

Duration of egg laying 4 GGA1, GGA12, GGA14
Egg laying cycle 3 GGA2, GGA25

Egg laying interval 38 GGA1–GGA6, GGA9–GGA11,
GGA13–GGA15, GGA19, GGA22, GGA28

Egg weight at age of 18–28 weeks 1 GGA8
Egg weight at age of 42–52 weeks 5 GGA1, GGA10, GGA22, GGA27

1 GGA, chicken (G. gallus) chromosome.

The number of significant SNPs associated with the studied egg laying parameters
(DEL, ELI, ELC and ELI) varied from 3 to 38. A significant proportion of these SNPs were
localized on chromosomes GGA1, GGA4 and GGA13 (5–12 SNPs).

GWAS of EW parameters in the studied F2 population hens revealed one and five SNPs,
respectively, associated with this trait in the first (18–28 weeks) and third (42–52 weeks)
periods of egg laying. These SNPs were established on five chromosomes (GGA8, GGA1,
GGA10, GGA22, and GGA27).

For three indicators (EN, AFE and EW2), no significant SNPs were identified in this
study at the established significance threshold.

3.3. Candidate Genes

Candidate genes linked to the studied egg productivity parameters in F2 resource
population hens were annotated using the significant SNPs that were found. In the regions
of identified SNPs (i.e., SNP position ± 0.2 Mb), a total of 219 genes described in the
NCBI databases [83,84] were detected (Supplementary Table S1), including 23 prioritized
candidate genes (PCGs) within which the identified SNPs were localized. The latter genes
were found on 13 chromosomes (GGA1–GGA4, GGA6, GGA10–GGA13, GGA15, GGA19,
GGA22 and GGA28). In the case of one PCG, for fibroblast growth factor 14 (FGF14), two
SNPs associated with EW3 were identified. Significant SNPs (p < 1.06 × 10−6) associated
with egg performance of F2 resource population hens and the appropriate candidate genes
are shown in Table 3.

The annotated genes were categorized into four functional clusters according to the
GO term enrichment score. Three clusters, however, were deemed insignificant since their
enrichment scores were less than one. The remaining one cluster (with enrichment scores >
1.15) included genes related to protein phosphorylation and ATP binding.

Supplementary Table S2 lists every gene that was annotated along with its function.
Comparative analysis of the results obtained in this study with information available in
the Animal QTLdb database (https://www.animalgenome.org/cgi-bin/QTLdb/index
(accessed on 21 April 2025)) confirmed the significant association of four identified can-
didate genes with selectively important traits in chickens, including five genes with egg
production indicators (Supplementary Table S3).

https://www.animalgenome.org/cgi-bin/QTLdb/index
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Table 3. Significant SNPs and prioritized candidate genes (in SNP positions) associated with egg
production indicators in F2 resource population hens.

Trait GGA 1 SNP Location, bp Gene p-Value

Egg weight at 42–52 weeks of age
1

Gga_rs13950763 144,541,672 FGF14 7.893 × 10−7

Gga_rs13950783 144,581,256 FGF14 7.893 × 10−7

22 Gga_rs16733701 5,254,215 GCK 8.868 × 10−7

Duration of egg laying 12 Gga_rs14048080 18,439,246 CNTN4 2.497 × 10−7

Egg laying cycle 2 Gga_rs13772998 136,095,111 SAMD12 1.565 × 10−7

Egg laying interval

1

GGaluGA016975 49,631,028 PHF5A 8.431 × 10−10

GGaluGA021889 62,111,416 AKR1B1 3.519 × 10−8

Gga_rs14835481 62,385,811 CALD1 4.072 × 10−15

Gga_rs13973123 171,655,178 ATP7B 7.489 × 10−8

2
Gga_rs13670867 41,560,503 PIK3R4 1.337 × 10−8

Gga_rs14258322 145,755,426 PTK2 2.003 × 10−7

3 Gga_rs14329753 26,472,162 PRKCE 7.511 × 10−7

4
Gga_rs15598417 61,793,533 FAT1 2.166 × 10−9

Gga_rs15600128 62,825,026 PCM1 4.072 × 10−15

GGaluGA266321 76,726,036 CC2D2A 5.887 × 10−15

6 Gga_rs14564900 5,790,608 BMS1 2.811 × 10−9

10 GGaluGA068824 10,301,717 SEMA6D 3.172 × 10−7

11 GGaluGA078973 16,137,404 CDH13 4.874 × 10−7

13
GGaluGA092132 5,413,088 SLIT3 3.573 × 10−7

Gga_rs14050895 8,419,842 ATP10B 4.550 × 10−7

15 Gga_rs15773720 6,817,919 ISCU 2.166 × 10−9

19 GGaluGA126763 5,248,070 LRRC75A 3.247 × 10−7

22 Gga_rs14684608 2,639,829 LETM2 9.628 × 10−7

28 Gga_rs16210664 2,694,485 ANKRD24 1.184 × 10−7

1 GGA, chicken (G. gallus) chromosome.

4. Discussion
Elucidating the genetic basis for efficient poultry breeding involves the search for, and

identification of, valuable genotypes focusing on the use of genomic technologies [88,89].
This has become possible thanks to the initial generation of the complete chicken genome
sequence [90,91] that contributed to advances in the genomics of other bird species [92–98].
For the successful implementation of genomic technologies in poultry farming practice, it is
essential to explore the molecular genetic mechanisms underlying the phenotypic variability
of economically important traits that are crucial for improving the efficiency of agriculture
and increasing the production of competitive products [99,100]. Our work presented here
yielded the associations of SNPs and candidate genes with the main egg productivity
traits in F2 chickens of the resource population produced through interbreeding of the
divergently selected breeds, RW and CW, that contrast in egg performance.

4.1. Egg Number and Egg Weight

EN and EW are the main egg performance indicators for which egg breeds are se-
lected [101]. Intensive selection of chickens for these traits contributed to the creation
of highly productive egg crosses, from which more than 300 eggs are expected per year
per layer [9]. At the same time, long-term selection of chickens for high egg production
contributed to a decline in genetic variability for this trait [102]. To date, many studies
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have been conducted aimed at finding candidate genes associated with EN [103–107] and
EW [108–111].

In our study, two PCGs were identified that were associated with EW3, including the
FGF14 gene [112] and the glucokinase (GCK) gene [113]. To the best of our knowledge,
previous investigations have not revealed any direct connection between these genes
and EW in chickens. At the same time, in research by Li et al. [114], the influence of
FGF14 on the eggshell qualitative characteristics in hens in the late period of egg laying
was demonstrated. These authors described the expression profiles of mRNAs and long
non-coding RNAs (lncRNAs) in the eggshell glands of young and older laying chickens,
comparing each in order to find potential genes linked to aging in the laying hen’s uterus.
The eggshell’s thickness correlates with its strength [115] and also determines the weight
indicators of both the shell and the whole egg. Taking this into account, the results of that
study [115] can be considered as an indirect confirmation of the FGF14 gene association
with EW established in our investigation.

The GCK gene enables glucokinase activity by its involvement in the glucose
6-phosphate metabolic process and in the glycolytic process. A number of studies have
shown the involvement of GCK in the glycolytic process in poultry, in particular, in
chickens [116,117] and ducks [118]. Its relationships with feed consumption [116,117],
embryo development, muscle development and egg production in chickens [119] have
been established. Christensen et al. [120] established a positive correlation between high
glucose concentration, on the one hand, and survival, weight and rapid growth of embryos
and hatched turkey chicks, on the other. The weight of the hatching egg is positively
correlated with the development and weight of embryos [121] and hatched chicks [122,123].
Based on this, it can be assumed that GCK may indirectly affect EW.

4.2. Age at First Egg and Duration of Egg Laying

AFE, or the start of egg laying in poultry, relates to the sexual maturation process
of growing birds and the commencement of sexual maturity, which are both controlled
by the hypothalamic–pituitary–gonadal system [20,124]. Many studies have shown the
influence of the hypothalamic–pituitary–gonadal axis on hormones and genes related to
egg production indicators, including AFE, in various poultry species [20–22].

Previously, we demonstrated the association of the genes for axin interactor, dorsaliza-
tion associated (AIDA), Na+/K+ transporting ATPase interacting 2 (NKAIN2), lin-9 DREAM
MuvB core complex component (LIN9) and mitogen-activated protein kinase kinase kinase
kinase 3 (MAP4K3) with AFE [23]. In the present work, we did not identify genes associated
with AFE at the level of the significance threshold established in this study. One respective
PCG, contactin 4 (CNTN4), was identified on GGA12 that was associated with DEL. This
productive trait is directly related to AFE [20,124]. Liu et al. [125] established a significant
association between CNTN4 and feed conversion ratio in an F2 resource population of
laying ducks during the egg laying period. In the same experiment, correlations were
found between the feed conversion ratio and egg production traits. This may partly confirm
our results on the association of CNTN4 with DEL, since egg production determines the
duration of the productive use of laying hens.

4.3. Egg Laying Cycle and Egg Laying Interval

The duration of ELCs and ELIs are important selection indicators that determine the
egg productivity and the productive use duration of poultry, including chickens [126–128].
The implementation of the productive potential of laying hens in terms of these indicators
depends on a number of factors, including the development and functional character-
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istics of the reproductive organs associated with egg laying [102,129], as well as feed
intake [126,130–134] and housing conditions [39,135].

Relative to our experimental data, a comparative analysis of open information sources,
e.g., the Chicken QTLdb database (https://www.animalgenome.org/cgi-bin/QTLdb/GG/
index (accessed on 21 April 2025)), demonstrated that, for eight PCGs identified in our
research, other studies have also shown close relationships with selection-significant traits
in chickens. These PCGs included ATPase copper transporting beta (ATP7B), aldo-keto
reductase family 1, member B10 (aldose reductase) (AKR1B1), caldesmon 1 (CALD1), slit
guidance ligand 3 (SLIT3), coiled-coil and C2 domain containing 2A (CC2D2A), BMS1,
ribosome biogenesis factor (BMS1), semaphorin 6D (SEMA6D), and ATPase phospholipid
transporting 10B (putative) (ATP10B) that were related to egg laying performance in
F2 resource population hens. In particular, two genes are known to be associated with
the development of reproductive organs and egg laying in chickens, i.e., CALD1 with
the morphogenesis of the Müllerian ducts, which develop into the reproductive tract of
female vertebrates [136], and SLIT3 with ovarian follicle growth [137]. Also, other studies
reported associations of these genes with eggshell quality characteristics such as eggshell
strength [138–140], and eggshell effective layer thickness (https://www.animalgenome.
org/cgi-bin/QTLdb/GG/qdetails?QTL_ID=159369 (accessed on 21 April 2025); [141]).

Curiously, the work presented here has parallels beyond birds into mammalian egg
production. In sheep oocytes, a significant upregulation of the AKR1B1 gene was observed
in the warm season [142], which may be suggestive of its role in the reproductive cycle
of homeothermic species. In the works of Jehl et al. [143] and Yuan et al. [144], a search
was performed for candidate genes associated with the efficiency of daily feed intake in
laying hens. A definite association was established for AKR1B1 [143] and ATP7B [144] with
this indicator. Also, for the genes associated in our study with ELI, other works reported
their relationship with poultry growth and meat productivity. In particular, AKR1B1 was
shown to be associated with growth and abdominal fat deposition [145], and with chest
width in 7-week-old chickens (https://www.animalgenome.org/cgi-bin/QTLdb/GG/
qdetails?QTL_ID=257052 (accessed on 21 April 2025); [146]). Furthermore, associations
were suggested for BMS1 [147], ATP10B [51] and ATP7B (https://www.animalgenome.
org/cgi-bin/QTLdb/GG/qdetails?QTL_ID=261257 (accessed on 21 April 2025); [148]) with
chicken growth rates; SEMA6D with growth and body weight in laying ducks aged 18
weeks [149]; and CC2D2A with shank weight, tibia weight and femur weight in ducks
during the laying period [150].

With all the above in mind, the available results of other studies largely agree with
our data on the direct effect of the CALD1, SLIT3 and FGF14 genes on the egg productivity
indices of hens. For other genes identified in our work, a number of studies have also
shown their relationship with growth and meat productivity indices (ATP7B, CC2D2A,
AKR1B1, SLIT3, BMS1 and ATP10B), feed consumption of laying hens during the egg laying
period (CNTN4, ATP7B and AKR1B1) in chickens, growth indices (SEMA6D), and the state
of the musculoskeletal system (CC2D2A) in laying ducks. Based on the hypothesis that
genes interrelating in similar biological networks may collectively affect the egg production
phenotype [151], we also examined all genes that overlapped the significant SNP regions
that we identified in our GWAS for functional enrichment (Supplementary Table S2). Ac-
cording to GO analysis, the best candidates were enriched for protein phosphorylation and
ATP binding, and calcium ion binding, which have broad biological/metabolic functions
and roles [85–87]. Further studies using GWAS, whole-genome sequencing and other
approaches (e.g., [104,152–155]) are required to confirm the association of these potential
genes with egg production in layers and elucidate endocrine and genetic factors affecting
egg laying performance [106].

https://www.animalgenome.org/cgi-bin/QTLdb/GG/index
https://www.animalgenome.org/cgi-bin/QTLdb/GG/index
https://www.animalgenome.org/cgi-bin/QTLdb/GG/qdetails?QTL_ID=159369
https://www.animalgenome.org/cgi-bin/QTLdb/GG/qdetails?QTL_ID=159369
https://www.animalgenome.org/cgi-bin/QTLdb/GG/qdetails?QTL_ID=257052
https://www.animalgenome.org/cgi-bin/QTLdb/GG/qdetails?QTL_ID=257052
https://www.animalgenome.org/cgi-bin/QTLdb/GG/qdetails?QTL_ID=261257
https://www.animalgenome.org/cgi-bin/QTLdb/GG/qdetails?QTL_ID=261257
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5. Conclusions
In this investigation, we performed a GWAS for traits associated with egg production

in an F2 resource population using the Illumina Chicken 60K SNP iSelect BeadChip. The
conducted studies revealed 51 SNPs and 23 PCGs showing a significant association with
EW1 (one SNP) and EW3 (five SNPs; FGF14 and GCK genes), as well as with DEL (four
SNPs; CNTN4 gene), ELC (three SNPs; SAMD12 gene), and ELI (38 SNPs; PHF5A, AKR1B1,
CALD1, ATP7B, PIK3R4, PTK2, PRKCE, FAT1, PCM1, CC2D2A, BMS1, SEMA6D, CDH13,
SLIT3, ATP10B, ISCU, LRRC75A, LETM2, and ANKRD24 genes) in the studied birds. The
maximum number of identified SNPs and candidate genes was detected on chromosome
GGA1 (14 SNPs), while the minimum number was observed on chromosomes GGA5,
GGA6, GGA8, GGA9, GGA11, GGA12, GGA15, GGA19, GGA25, GGA27 and GGA28 (one
SNP each). In one of the 23 identified PCGs, FGF14, two SNPs were localized associated
with EW3. These findings are crucial for comprehending the molecular genetic underpin-
nings of development and implementation of productive potential in hens. Although they
need more research, the discovered SNPs and PCGs can be utilized as genetic markers in
breeding initiatives meant to boost and enhance egg yield.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes16050583/s1, Table S1: SNPs and candidate genes associated
with egg production parameters in F2 resource population hens; Table S2: Gene ontology (GO) term
enrichment analysis at the positions of the determined SNPs in F2 resource population chickens;
Table S3: Comparative analysis of the obtained experimental data relative to the Animal QTLdb
database (https://www.animalgenome.org/cgi-bin/QTLdb/index).
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