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Abstract 

Hypertrophic cardiomyopathy is usually characterised histologically by increased ven-

tricular wall thickness and myocyte disarray. In human and rodent HCM, subcellular 

alterations were detected that involve the intermediate filament cytoskeleton (mainly 

desmin) and proteins that are important for mechanical and electrochemical connec-

tion of the cardiomyocytes (beta-catenin and connexin-43, respectively). We demon-

strate here that similar changes can be visualised in HCM samples from cats, with 

prominent desmin and αB-crystallin aggregates that are accompanied by increased 

expression at the protein level. In addition, there is a disorganisation of beta-catenin 

and connexin-43, which display additional aberrant signals at the lateral surface of 

cardiomyocytes. This suggests that the subcellular response in cardiomyocytes to 

HCM is shared by humans and cats.

Introduction

Hypertrophic cardiomyopathy (HCM) is a serious disease in humans and cats and 
exhibits considerable similarities at the molecular, cellular and whole organ levels [1–5]. 
It is characterized by a hypertrophied and non-dilated left ventricle in the absence of 
abnormal loading conditions capable of producing left ventricular hypertrophy [6]. HCM 
is the most common heart disease in cats affecting up to 15% of the general feline 
population [7]. Echocardiography is the clinical gold standard for HCM diagnosis in 
cats, and the most used imaging modality in humans [6,8]. Clinical signs in cats include 
respiratory distress due to congestive heart failure, pelvic limb ischaemic paralysis/
paresis due to aortic thromboembolism or sudden arrhythmogenic death. Prognosis for 
cats with HCM is very variable, with median survival times ranging from 596 to 1276 
days [9]. The role of genetic testing is very limited in cats as to date only two disease 
associated variants in MYBPC3 have been identified, one in the Maine coon and one in 
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the Ragdoll breed; additionally, a potentially pathogenic variant was found in MYH7 in 
a domestic shorthair [10]. Histological features include cardiomyocyte hypertrophy and 
disarray, interstitial fibrosis and intramural vascular pathology [4,11,12].

Additionally in cardiomyocytes from human HCM patients, cytoplasmic aggre-
gates of the intermediate filament (IF) desmin and its chaperone heat shock 
protein αB-crystallin together with disorganisation of associated junctional proteins 
including β-catenin, N-cadherin and connexin43 were identified [13–17]. Further-
more, a comparable pattern of cytoplasmic pathology has been documented in a 
variety of other cardiac conditions [17–19] including cardiomyopathies resulting 
from genetic mutations in desmin and junctional proteins [20–29]. The develop-
ment of such aggregates is suggestive of IF disorganisation and inadequate pro-
tein quality control (PQC) which underlies the cells’ inability to completely remove 
the toxic accumulation of malformed proteins and suggests that IF disruption 
represents a shared cellular response to a variety of genetic and acquired cardiac 
insults. There is a sparsity of information describing IF configuration in feline car-
diomyocytes or the impact of HCM on their spatial arrangement. However, in one 
study cytoplasmic aggregates of unknown composition were detected in cardiomy-
ocytes from cats with HCM and in a second study a variable pattern of staining for 
desmin was identified in HCM cats compared to controls but cytoplasmic aggre-
gates were not seen [2,30].

Desmin is the most abundant IF protein in cardiomyocytes, it extends from the 
nucleus to the cell membrane where it associates with costameres, the lateral 
anchorage for cardiomyocytes to the extracellular matrix and to desmosomes and 
area composita at the intercalated disc (ID), highlighting its role in maintaining cell 
adhesion, intercellular communication and electrical coupling [29,31–33]. Refer to Fig 
1 for the arrangement of desmin, αB-crystallin, and the junctional proteins in healthy 
cardiomyocytes.

Desmin is also critical for mechanotransduction between cardiomyocytes and the 
extracellular matrix as well as between adjacent cardiomyocytes [34–37]. Addition-
ally, its interaction with mitochondria assists with their alignment, morphology, and 
function [32,35,36,38–41]. Therefore, disorganisation of desmin and its interaction 
partners could contribute to important pathological features of HCM including mito-
chondrial dysfunction, resulting in energy imbalance, cardiomyocyte death, fibrosis 
and arrhythmogenesis [23,32].

In light of the disruption to the IF network and junctional proteins described in 
humans with HCM [13–17] we sought to identify and further characterise the locali-
sation of these proteins in a cohort of cats with HCM. Specifically, we assessed the 
quantity of desmin and described its cellular organisation in cardiomyocytes from  
the left ventricular free wall (portion of the left ventricle wall that is not connected to 
the interventricular septum or the cardiac apex) of cats with and without HCM. Addi-
tionally, we explored the effect of desmin disorganisation on the cellular location of 
other closely associated proteins including (1) αB-crystallin, a chaperone for desmin, 
(2) β-catenin, a component of the adherens junction, and (3) connexin43, a gap junc-
tion protein and found this to be disturbed in feline HCM.
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Materials and methods

Ethics statement

This project has been ethically reviewed by the University Clinical Research Ethical Review Board (CRERB). CRERB 
reviews all clinical research proposals involving both animals and human subjects and has granted ethical approval (URN 
2016 1485) for the project. The animals used in this study were clinical cases not experimental animals. Euthanasia was 
performed on humane ground to alleviate suffering following discussion between owners and clinicians using an overdose 
of intravenous barbiturate. Written consent was obtained for euthanasia following normal hospital policy and for cardiac 
material to be used after death for the study. No personal data related to the owners of the cats was recorded or stored for 
this study. Only the cats case number, signalment, history and clinical findings were recorded and stored.

Study population

Cats were recruited from the Royal Veterinary Collage Small Animal referral or first opinion hospitals. Control group cats 
were those that died of non-cardiac disease with no cardiac related abnormalities detected on clinical history or by clinical 
exam and gross/histopathological examination. Complete echocardiographic examination or Cardiac TFAST (a rapid tho-
racic ultrasound examination used in an emergency situation with the animal generally in sternal recumbency optimising the 
image to evaluate cardiac, pulmonary, mediastinal and pleural structures) was performed in 11/12 control group cats. HCM 
group cats were those that showed clinical signs compatible with HCM (congestive heart failure, aortic thromboembolism, 
arrhythmia, gallop sound, murmur) and confirmed by complete echocardiographic examination or Cardiac TFAST and gross/
histopathological examination. The HCM cats had no other disease that would result in left ventricular hypertrophy including 
hypertension, hyperthyroidism, congenital cardiac disease, or infiltrative disease. Detailed information on signalment, echo-
cardiographic parameters and histopathological diagnosis are given in S1 Table (supporting information). Refer to S2 Table 
for clinical presentation, reason for euthanasia and a summary of cardiac imaging. Left ventricular samples from a total of 
12 control and 23 HCM cats were used for evaluation of protein expression. Full details of which cats were used for Western 
blotting, which for immunohistochemistry and which for both modalities are given in S1 and S2 Tables. In brief 3/12 control 
and 4/23 HCM cats were used for only Western blotting, 2/12 control and 13/23 HCM cats were used for only immunohisto-
chemistry and 7/12 control and 6/23 HCM cats were used for both Western blotting and immunohistochemistry.

Fig 1. Schematic illustration summarising the arrangement of desmin, αB-crystallin, and the junctional proteins in normal cardiomyocytes. In 
the normal heart, desmin co-localises with αB-crystallin and is aligned into stripes at the Z-discs and intercalated discs. The junctional proteins including 
β-catenin and N-cadherin which form adherens junctions, and connexin43 which form gap junctions, are situated at the intercalated disc and co-localise 
with desmin.

https://doi.org/10.1371/journal.pone.0327850.g001

https://doi.org/10.1371/journal.pone.0327850.g001
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Cardiac imaging

Cardiac imaging was performed as previously described [42]. In brief, measured echocardiographic parameters 
included left atrium to aortic ratio (LA/Ao), maximal left ventricular free wall thickness in diastole (LVFWd), maximal 
interventricular septum thickness in diastole (IVSd), presence of systolic anterior motion of the mitral valve (SAM), 
presence of spontaneous echo contrast (SEC) and presence of a formed thrombus in the LA or left auricular append-
age (S3 Table). HCM was defined as a diastolic left ventricular wall thickness (LVFWd or IVSd) measuring ≥6 mm on 
2‐dimensional (2D) imaging [43] with or without papillary muscle hypertrophy, SAM or dynamic left ventricular outflow 
tract obstruction (LVOTO) [44]. All echocardiographic examinations were performed by a veterinary cardiology special-
ist or resident under direct supervision. Point of care ultrasound (POCUS) examinations were performed in the emer-
gency setting by a veterinary emergency and critical care specialist or resident in training under direct supervision and 
facilitated measurement of LA/Ao as described above and a subjective assessment of left ventricular wall thickness in 
diastole.

Heart collection and histopathological examination

The heart was harvested and the residual blood in the heart was flushed with tap water within 30 minutes of euthanasia. 
A 10 x 10 mm full thickness left ventricular (LV) free wall segment was excised and preserved in RNAlater (Qiagen). The 
remainder of the heart was immersed in a 10% formaldehyde solution for 24 hours before undergoing dissection and 
processing. Four-micron thickness sections were prepared from the paraffin-embedded cardiac tissues and stained with 
either haematoxylin and eosin or Masson’s Trichrome stain. Histopathological diagnosis was made by a specialist veter-
inary pathologist (MD, LW) [45]. Macroscopic indicators for HCM comprise left ventricular wall thickening with or without 
enlargement of the left atrium or both atria [46]. Microscopic indicators for HCM encompass more than 5% of the left ven-
tricle displaying myofiber disarray, with or without myocyte enlargement, interstitial fibrosis, or intramural arteriosclerosis 
[45,47].

Immunostaining

Cardiac tissues in paraffin blocks were cut into a 4-micrometre section and de-paraffinised and rehydrated using xylene, 
ethanol of 100%, 90%, 70% and 30% concentration, and double distilled H

2
O. Antigen retrieval was accomplished by incu-

bating the slides in 10mM pH6 citric acid buffer at 92.5°C for 15 minutes. Sections for chromogenic immunostaining were 
first blocked with BLOXALL (Vector Laboratories) to quench the activity of endogenous peroxidase for 15 minutes at room 
temperature. Sections were blocked with either 2.5% normal horse serum (Vector Laboratories) for chromogenic immu-
nostaining or 3% normal goat serum (Sigma) for 30 minutes at room temperature depending for fluorescent immunos-
taining. Sections were then incubated with the primary antibody (β-catenin, Sigma-Aldrich, C2206; β-catenin, Santa Cruz 
Biotechnology, E-5, sc-7963; N-cadherin, Santa Cruz Biotechnology, D-4, sc-8424; Connexin43, ThermoFisher, 71–0700; 
Desmin, Agilent, M0760, M076029-2) at 4°C overnight followed by incubation with horseradish peroxidase (Vector Labo-
ratories) for chromogenic immunostaining; or DAPI (Sigma), fluorophore conjugated anti-rabbit or anti-mouse secondary 
antibodies (multilabelling quality; Jackson ImmunoResearch) for fluorescent immunostaining, at room temperature for an 
hour. Double immunofluorescence stainings were always performed with two antibodies raised in different species, except 
for desmin (monoclonal mouse antibody) and αB-crystallin (αB-crystallin conjugated with Alexa Fluor® 488, Santa Cruz 
Biotechnology, F-10, sc-137129; monoclonal mouse antibody) where indirect immunofluorescence staining was per-
formed first for desmin followed by direct immunofluorescence staining for αB-crystallin. For chromogenic immunostaining, 
3,3’Diaminobenzidine (DAB) substrate (Vector Laboratories) was used for colour development and the slides were coun-
terstained with haemotoxylin. All slides were then mounted, coverslipped, and sealed before examination. The number of 
cats used for immunostaining for each protein is listed in Table 1.
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Image analysis

Fluorescent labelling of the proteins was detected using a Leica DMRA2 upright microscope connected to a monochrome 
camera (AxioCam). A Leica DM4000B with DFC550 colour microscopy camera (Leica) was used to take microphoto-
graphs for chromogenic IHC. The microscopes and cameras were controlled using the Leica Application Suite Version 
4.12. Slides were examined under 200 or 400x magnification and the detection of overexposure facility was turned on 
during observation.

Western blotting

Protein lysates from the mid LV free wall were used for Western blotting. Homogenised cat LV free wall (12 μg) was 
electrophoresed on precast gradient gel (Bolt 4−12% Bis-Tris Plus Gels, ThermoFisher) and transferred to polyvinylidene 
difluoride membrane (Pierce PVDF Transfer Membrane 0.45 μm, ThermoFisher) which was later blocked with 5% milk 
(0.1% fat dry milk, Marvel) in Tris-buffered saline 0.1% Tween 20 (TBST) followed by an overnight incubation in agita-
tion with the primary antibodies (Desmin, Agilent, M0760, M076029-2; Desmin, R&D, AF3844; αB-crystallin, Santa Cruz 
Biotechnology, F-10, sc-137129; β-catenin, Sigma-Aldrich, C2206; GAPDH, Novus Biologicals, 1D4, NB300−221) at 4°C, 
a 1-hour incubation with horseradish peroxidase-conjugated secondary antibodies (Goat anti-rabbit IgG, Pierce, 1:1500; 
Goat anti-mouse IgG, Pierce, 1:1500), and enhanced chemiluminescence substrate (Western Lightning Plus-ECL, Perkins 
Elmer) sequentially. All the antibodies were suspended in 0.5% milk in TBST. The membrane was washed three times in 
TBST between each incubation. The developed signals were detected using ChemiDoc MP Imaging System (Bio-Rad) 
and densitometry (ImageJ) with GAPDH as loading control was performed to semi-quantified protein level. Five control 
and 5 HCM cats were used for immunoblotting of desmin and αB-crystallin; and 10 control and 10 HCM cats for used 
for junctional protein β-catenin immunoblotting. αB-crystallin was analysed in the same set of cats as used for desmin to 
assess paired expression. β-catenin was analysed using membrane resources from a parallel study on myocardial fibrosis 
[42], which included five additional cats in each group.

Image processing and cepstral analysis with circular variance calculation

Each image was imported from a predefined list of files into Wolfram Mathematica 13 (Champaign, Il). The images were 
first adjusted for contrast using the ImageAdjust function, and subsequently converted to grayscale using ColorConvert. 
To apply a pixel-wise transformation based on spatial location, a shift operation was conducted. This transformation was 
defined by a non-linear shift in pixel intensity, proportional to the Euclidean distance from the center of the image, scaled 
by the image dimensions. The resulting transformed image was clipped to ensure pixel values remained within the nor-
malized range [0, 1]. After transformation, a Gaussian filter was applied with a kernel size of 2, and the filtered image was 
subtracted from the original. This created a sharper image for further analysis. The cleaned image was then subjected to 
cepstrogram analysis. The cepstrogram was computed by cropping the image to central regions, followed by the calcu-
lation of the absolute magnitude of the Fourier periodogram followed by obtaining the absolute magnitude of the inverse 
Fourier transformation to create the cepstrogram. A polar transformation of the cepstrogram was performed to analyze the 

Table 1. Number of cats per group used for immunostaining.

Protein Control (N) HCM (N)

Desmin 9 18

αB-crystallin 5 5

β-catenin 4 6

N-cadherin 3 3

Connexin43 3 8

https://doi.org/10.1371/journal.pone.0327850.t001

https://doi.org/10.1371/journal.pone.0327850.t001
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circular symmetry of cepstral components. The transformation was calculated using angular coordinates, converting the 
cartesian image coordinates to polar coordinates. A line plot of the cepstrogram data was generated to visualize the mean 
cepstral coefficients. Circular variance, a measure of the dispersion of angular orientations in the image, was computed 
from the orientation data extracted from the polar-transformed cepstrogram. The position of the maximum orientation 
value was identified and the mean values of pixel intensities at different angular positions were used to calculate the circu-
lar variance, using the formula:

 1 – \frac{\sqrt{\text{Total}[\sin (\text{angle})]̂2 + \text{Total}[\cos (\text{angle})]̂2}}{l} 

Statistical analysis

Continuous data are reported as mean (SD) or median [interquartile range or range] depending on the result of a Shapiro- 
Wilk normality test. Student t test, or Welch t test was used if the equal variance assumption was violated to detect differ-
ence in age. Mann-Whitney test was used to analyse protein expression between groups. Categorical data are reported 
by percentage and were analysed using Fisher’s exact test. Correlation was assessed using Spearman’s rho test. Two-
tailed analysis was used and the results were considered significant when p < 0.05. All analyses were performed using 
commercial software (GraphPad Prism 8, GraphPad Software).

Results

Animals

The median age (range) was 6.3 (1.5–19.0) years in the control group and 7.0 (1.7–15.0) years in the HCM group 
(p > 0.7). Three control cats were known to be less than 3 years old although their exact age was unknown. A pre-
sumptive age of 1.5 years was used for these three cats to perform statistic tests. As the age range was large, we 
also assessed the percentage of cats >7 or ≤ 7 years in both groups. In the control group 41.7% (5/12 cats) were > 7 
years, in the HCM group 47.8% (11/23 cats) were > 7 years. Male cats accounted for 41.7% (5 out of 12) and 73.9% 
(17 out of 23) of the cats in the control and HCM group, respectively (p = 0.07). A full echocardiographic examination 
was performed in 3/12 control and 14/23 HCM cats. Cardiac focused TFAST imaging was performed in 8/12 control 
and 9/23 HCM cats.

Increased expression and disorganisation of desmin and αB-crystallin in HCM cats

Because cytoplasmic aggregates of desmin and αB-crystallin were documented in human cardiac patients and rodent 
models of heart disease we sought to examine the cellular localisation of desmin and αB-crystallin and assess their spatial 
relationship using immunohistofluorescence in feline hearts. In the control cats, desmin localised to the Z-discs and inter-
calated discs as fine and thicker stripes respectively in the cardiomyocytes. In contrast, in the tissues from HCM affected 
hearts, the desmin signal was frequently lost from the intercalated discs with or without preserved desmin organisation at 
the Z-disk. In addition, a severely disorganised pattern of desmin, characterised by a complete loss of the typical stripe 
pattern was seen in some cardiomyocytes in all HCM cats that were analysed (Fig 2).

In light of our immunohistofluorescence data and the proposed role of impaired protein quality control (PQC) in HCM, 
we quantified the amount of desmin and its chaperone protein αB-crystallin in the myocardium of cats with and without 
HCM using Western blot. Desmin and αB-crystallin were identified as bands at 50kDa and 22kDa respectively. The HCM 
cats expressed increased amounts of desmin (median 1.41 [range 0.59–2.19] (N = 5) versus 0.54 [0.27–0.69] (N = 5); 
p = 0.016) and αB-crystallin (median 1.46 [range 0.63–2.39] (N = 5) versus 0.56 [0.18–0.66] (N = 5); p = 0.032) compared to 
the controls (Fig 3).
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Correlation of desmin and αB-crystallin

Since αB-crystallin is an important chaperone protein for desmin, the association between these two proteins was assessed. 
Quantification by Western blot indicated that desmin and αB-crystallin expression levels were highly correlated (Fig 3C).

We then explored the localisation of αB-crystallin and desmin using double immunostaining to ascertain whether the 
two proteins were spatially associated. αB-crystallin showed overlapping distribution with desmin in both control and HCM 
cats. Increased αB-crystallin fluorescence was observed in regions of elevated desmin signal, particularly within cyto-
plasmic aggregates in cardiomyocytes from HCM cats (Fig 4). In addition, there was evidence of autonomous increase in 
labelling of both proteins given the variation in overlay colour in the labelled sections. This would suggest that expression 
of both proteins is regulated independently.

Two dimensional cepstral analysis of LV tissue sections from control and HCM cats

Given the disorganisation of desmin in the HCM cats identified by immunoblotting we performed two dimensional 
cepstral analysis on LV sections from (7 control cats) and (16 HCM cats) as a way of further determining the desmin 
organisation in cardiomyocytes from diseased cats (Fig 5). Images from regions with minimal aggregates were used 

Fig 2. Aberrant localisation of desmin and αB-crystallin in feline HCM samples. A, B Confocal micrographs of feline hearts immunostained for 
desmin and αB-crystallin. In the control cats, desmin and αB-crystallin located to the Z-discs (closed arrow heads) and intercalated discs (open arrow 
heads) in the cardiomyocytes. C, D In the HCM cats, disorganised and aggregated desmin and αB-crystallin (star) were seen in some of the cardiomy-
ocytes. Immunostaining of desmin and αB-crystallin varied in intensity between cardiomyocytes with some cell staining with hight intensity (bright red/
green) or lower intensity (duller red/green). The degree of desmin and αB-crystallin loss at the Z-discs and intercalated discs also varies between differ-
ent cardiomyocytes. Open arrowheads indicate the preserved though less distinct desmin and αB-crystallin at the intercalated disc. E, F Reagent control 
was performed by omitting the primary antibody. 400x magnification; Desmin – red; αB-crystallin – green; Nuclei – blue; Scale bar = 25 µm.

https://doi.org/10.1371/journal.pone.0327850.g002

https://doi.org/10.1371/journal.pone.0327850.g002
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Fig 3. Desmin and αB-crystallin expression is increased in feline HCM with a strong positive correlation between the expression of both 
proteins. Immunoblotting on whole heart extracts from control (white bar; n=5) and HCM (dotted bar; n=5) cats was carried out using a mouse mono-
clonal antibody against desmin (panel A) and a mouse monoclonal antibody against αB-crystallin (panel B). Bands at the expected molecular weight (50 
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for analysis in order to assess the arrangement of desmin at Z-discs. Our analysis confirmed a greater degree of 
desmin disorganisation in LV samples from HCM cats compared to control cats in agreement with our immunostaining 
results.

Fig 4. Cytoplasmic aggregation of desmin and αB-crystallin within individual cardiomyocytes in HCM hearts. Images from a HCM cat with 
fluorescent signals from individual channel for desmin and αB-crystallin are displayed in A and B. Merged images in C showed co-localisation of desmin 
and αB-crystallin in yellow. Increased expression of desmin coincided with increased αB-crystallin expression particularly within cytoplasmic aggregates. 
There is also evidence of autonomous increase in labelling of both proteins since in addition to yellow labelling consistent with co-localisation of the two 
proteins, cells with primarily green and orange/red labelling was also observed. 400x magnification; Desmin – red; αB-crystallin – green; Nuclei – blue; 
Scale bar = 50 µm.

https://doi.org/10.1371/journal.pone.0327850.g004

and 22 kDa, respectively) were detected using enhanced chemiluminescence. GAPDH was used as a loading control. The right shows a representative 
blot, while quantifications are shown on the left. A Desmin was significantly increased in the HCM compared to the control samples. B αB-crystallin was 
significantly increased in the HCM compared to the control samples. Data were analysed with Mann-Whitney test and graphed in bar chart format show-
ing individual data points, median, 25th and 75th quartiles. C A strong correlation was seen between Desmin and αB-crystallin expression quantified by 
immunoblotting. Data was analysed using Spearman’s correlation test.

https://doi.org/10.1371/journal.pone.0327850.g003

https://doi.org/10.1371/journal.pone.0327850.g004
https://doi.org/10.1371/journal.pone.0327850.g003
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Disorganisation of adherens junction proteins

Alteration in the cellular localisation of key proteins associated with the ID including those forming the adherens junctions 
were identified in humans with hypertrophic cardiomyopathy [16,17,29]. We therefore examined the cellular localisation of 
the adherens junction proteins β-catenin and N-cadherin in control and HCM cats using immunohistofluorescence  
(Fig 6). β-catenin localised to the intercalated discs as expected in the control group (N = 4). As described for human car-
diomyopathy, aberrant location of β-catenin, usually to the lateral side of the cardiomyocytes, was seen in 5 of the 6 HCM 
cats (N = 6) but not observed in any of the controls. A clear association between aberrant localisation of β-catenin and 
feline HCM was identified (p = 0.048).

Double immunostaining for desmin and β-catenin revealed that in some cats with HCM, desmin staining could be lost 
at the ID while β-catenin localisation at the ID remained unaffected. However, in HCM cats with more severe disruption of 
desmin architecture, staining for both desmin and β-catenin could be lost at the ID (Fig 7).

Since we exclusively used paraffin embedded sections for this work, we confirmed our findings by chromogenic immu-
nohistochemistry of β-catenin as this is the standard protocol used in human histological studies. We again identified 
abnormal expression of β-catenin in HCM cats by immunostaining, either as a diffuse pattern within the cytoplasm or 
displaced laterally to the cell periphery (Fig 8). Additionally, as N-cadherin also forms part of the adherens junction with  
β-catenin, we assessed the localisation of N-cadherin in 3 control and 3 HCM cats with immunohistochemistry and 
showed that the pattern of expression of N-cadherin in both the control and HCM cats resembled that of β-catenin (Fig 8).

Fig 5. FFT Two-dimensional cepstral analysis of left ventricular tissue sections from control and HCM cats. More desmin disorganisation was noted in 
the HCM sections compared to control sections (p<0.001). The scale is 0-to-1 where 0 is completely disordered and 1 is completely ordered.

https://doi.org/10.1371/journal.pone.0327850.g005

https://doi.org/10.1371/journal.pone.0327850.g005
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Given the variation in expression of β-catenin by immunostaining in the HCM cats, we then quantified its expression 
using immunoblotting. On Western blot, β-catenin was identified as a band at 92kDa and a significantly greater quantity of 
β-catenin was identified in the HCM cats compared to controls (median 1.23 [IQR 0.81–1.64] (N = 10) versus 0.79 [0.64–
0.97] (N = 10); p = 0.044) (Fig 9).

Disorganisation of connexin43

Given the known association between desmin and connexin43 [48,49] and the altered localisation of connexin43 in human 
cardiomyopathy patients [15,29], we then compared the cellular distribution of connexin43, the building block of the gap 
junction in control cats and those with HCM. As expected, connexin43 was consistently expressed at the intercalated discs in 
the control cats. In contrast, in the HCM cats there was reduced expression of connexin43 at the ID and significant peripheral 
staining along the lateral sides of the cardiomyocytes. The localisation of connexin43 was significantly different between con-
trol and HCM cats (p = 0.024) and aberrant localisation was seen in 7 (out of 8) HCM cats but not in the control cats (Fig 10).

We then performed double immunostaining to examine the spatial relationship between desmin and connexin43. The 
lateralisation of connexin43 and partial loss of expression from the ID was seen even when desmin was still expressed at 

Fig 6. Abnormal localisation of β-catenin protein in feline HCM samples. A β-catenin located at the intercalated discs (thin arrow) in the control 
cats. B In HCM cats, β-catenin was observed at the intercalated discs (thin arrow), in addition, β-catenin showed an aberrant localisation usually seen 
at the lateral side (thick arrow) of cardiomyocytes. C A bar chart shows the association of feline HCM and aberration of β-catenin localisation (p=0.048). 
Data was assessed using Fisher’s exact test. 400x magnification. β-catenin – green; Nuclei – blue; Scale bar = 25µm.

https://doi.org/10.1371/journal.pone.0327850.g006

Fig 7. Double immunostaining for desmin and β-catenin protein revealed normal localisation of β-catenin at the intercalated discs in the 
presence of desmin disorganisation. A Desmin (red) and β-catenin (green) co-localised (yellow) at the intercalated discs (arrows) in control samples. 
B Desmin disorganisation with reduced labelling at the intercalated discs while β-catenin labelling (green) was relatively unaffected (arrows). C More 
severe desmin disorganisation away from intercalated discs caused further reduction in co-localisation, (less yellow labelling) while β-catenin labelling 
(green) remained present at the intercalated discs (arrows). 400x magnification. Desmin – red; β-catenin – green; Nuclei – blue; Scale bar = 25µm.

https://doi.org/10.1371/journal.pone.0327850.g007

https://doi.org/10.1371/journal.pone.0327850.g006
https://doi.org/10.1371/journal.pone.0327850.g007
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Fig 9. An increase in expression of β-catenin in HCM cats was identified using immunoblotting. Immunoblotting on LV extracts from control 
(white bar; n=5) and HCM (dotted bar; n=5) cats was carried out using a mouse monoclonal antibody against β-catenin. Bands at the expected molec-
ular weight (92kDa) were detected using enhanced chemiluminescence. GAPDH was used as a loading control. The right shows a representative blot, 
while quantifications are shown on the left. A significantly greater quantity of β-catenin was identified in the HCM cats compared to controls. Data were 
analysed with Mann-Whitney test and graphed in bar chart format showing individual data points, median, 25th and 75th quartiles Refer to supplemen-
tary materials for full immunoblots.

https://doi.org/10.1371/journal.pone.0327850.g009

Fig 8. β-catenin and N-cadherin both show aberrant localisation in feline HCM. β-catenin and N-cadherin were only observed at the intercalated 
discs (open arrowhead) in the control cats (A, B) while in the HCM cats (C, D) β-catenin and N-cadherin was frequently absent at the intercalated discs 
or assumed a diffuse pattern within the cytoplasm (open arrow heads). Lateralisation of the β-catenin is shown by the closed arrowhead, however, later-
alization of N-cadherin was not observed in the 3 HCM cats. 400x magnification. Scale bar = 50 µm.

https://doi.org/10.1371/journal.pone.0327850.g008

https://doi.org/10.1371/journal.pone.0327850.g009
https://doi.org/10.1371/journal.pone.0327850.g008
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the ID. However, similar to our findings for β-catenin, marked abnormal localisation of connexin43 coincided with severely 
disrupted desmin alignment (Fig 11).

In summary, our results document disorganisation and aggregation of the IF desmin and its chaperone αB-crystallin in 
cardiomyocytes from HCM affected cats. Additionally, we have shown that desmin disorganisation at the intercalated disc 
is associated with altered cellular location of key junctional proteins which likely affects important cellular functions includ-
ing cellular adhesion and electrical coupling.

Discussion

This is the first study to identify aggregation of desmin and its chaperon protein αB-crystallin and the disruption to the ID 
proteins β-catenin, N-cadherin and connexin43 in cardiomyocytes from cats with HCM (Fig 12).

Our results significantly add to the current literature by confirming that IF disorganisation is a noteworthy finding in 
feline HCM with several important consequences including accumulation of toxic desmin/αB-crystallin aggregates which 
may suggest impaired PQC and abnormal localisation of junctional proteins required for correct functioning of the ID such 
as electrical coupling and intercellular linkage and communication.

The IF network together with its associated proteins, forms a dynamic framework that facilitates transmission of mech-
anochemical signals within cardiomyocytes as well as cross talk between organelles such as the sarcoplasmic reticulum 
and mitochondria [32,33,50,51]. Furthermore, the IF network extends to the costameres and ID to maintain cell adhesion, 
intercellular communication and electrical coupling [17,29,31–33]. Desmin is therefore vital for efficient functioning of cru-
cial cellular processes and the disruption of the network seen in feline HCM will impair intra and intercellular performance.

Cytoplasmic aggregates are seen in desmin-related cardiomyopathies (DRM), caused by genetic mutations affecting 
desmin or its chaperone αB-crystallin [24,29,52]. These mutations result in formation of abnormally folded protein products 
and abnormal filament assemblies which are usually removed by the PQC, a process known as proteostasis [28,53–55]. 
Therefore, aggregate formation indicates overload of the PQC and failure to clear these terminally misfolded proteins 
[13,26,54]. Indeed, overload of the proteasome has been suggested as a more general mechanism to lead to a HCM phe-
notype, based on mouse models of sarcomeric and non sarcomeric HCM causing mutations [56,57]. It remains unclear 
whether it is the disruption of the IF network and its effect on interconnected proteins and organelles or the accumulation 
of toxic desmin aggregates per se, or a combination of both that is the primary mechanism driving cellular pathology 
[29,58,59]. However, desmin null mice or those with mutations either in desmin or αB-crystallin display IF disorganisation 

Fig 10. Connexin-43 displays aberrant localisation in feline HCM. A Connexin43 located at the intercalated discs (thin arrow) in the control cats. B 
Aberrantly localised connexin43 forming a line at the lateral side of the cardiomyocyte from a HCM heart (thick arrow) with reduced expression at the 
intercalated discs. C Number of cats in each group with or without aberrant localisation of connexin43 was shown in bar chart format. Disorganisation of 
connexin43 was exclusively found in feline HCM (p=0.024). Data was analysed with Fisher’s exact test. 400x magnification. Connexin43 – green; Nuclei 
– blue; Scale bar = 25µm.

https://doi.org/10.1371/journal.pone.0327850.g010

https://doi.org/10.1371/journal.pone.0327850.g010
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Fig 11. Double immunostaining for desmin and connexin43 protein showed overlapping signal distribution at the intercalated discs in control 
cats but aberrant localisation in HCM cats. A Connexin43 co-localised with desmin at the intercalated discs (arrows) in a control cat. B Disorganisa-
tion of some connexin43 to the lateral side of the cardiomyocytes (arrowheads) was identified while desmin was still co-expressed at the intercalated 
disc with connexin43 (arrows). C Desmin and connexin43 were less distinct at the intercalated discs (arrow) and most connexin43 localised to the lateral 
side of the cardiomyocytes (arrowheads). D In sections with severely disrupted alignment of desmin a similar abnormal localisation of connexin43 was 
observed. The arrow shows that connexin43 still co-localised with the desmin at that intercalated disc left. 400x magnification. Desmin – red; Con-
nexin43 – green; Nuclei – blue; Scale bar = 25µm.

https://doi.org/10.1371/journal.pone.0327850.g011

Fig 12. Schematic illustration summarising the abnormal arrangement of desmin, αB-crystallin, and the junctional proteins in HCM affected 
cardiomyocytes. In HCM affected hearts, desmin and αB-crystallin are lost from the Z-discs and intercalated discs. In some cardiomyocytes, aggre-
gates containing desmin and αB-crystallin were observed, especially in the perinuclear area. While some cardiomyocytes retained the normal localisa-
tion of the junctional proteins β-catenin, N-cadherin, and connexin43, others showed disorganisation of these junctional proteins to the lateral side of the 
cardiomyocytes parallel to the orientation of the myofibrils. Note: The location of nucleus should be away from the intercalated disc and is drawn here 
only to indicate the perinuclear localization of the aggregates in the HCM cardiomyocytes.

https://doi.org/10.1371/journal.pone.0327850.g012

https://doi.org/10.1371/journal.pone.0327850.g011
https://doi.org/10.1371/journal.pone.0327850.g012
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and cardiac abnormalities prior to aggregate formation and present with pathology related to impaired function of cellular 
organelles including mitochondria [33,34,50,58,60–64]. Disruption of critical mitochondrial functions such as calcium han-
dling, metabolism and programmed cell death, which are dependent upon an intact cytoskeletal network could provoke a 
myriad of pathological effects ultimately resulting in a cardiomyopathy phenotype [40,57,60,65–73].

Disruption of the IF network has been identified in human HCM patients with various patterns of expression noted in 
different cardiomyocytes from the same patient [13,14,74,75]. In cats with HCM, immunostaining of desmin was reported 
to be weaker than in controls at the Z discs and ID and granular staining within the cytoplasm of occasional cardiomyo-
cytes which probably represents cytoplasmic accumulation of desmin was also described [30]. Additionally, accumulation 
of material, either described as electron dense rods extending from the Z-disc [2] or numerous thick clumps of Z-band 
material around the nucleus [76] has been reported in HCM cats although the composition of these materials was not 
confirmed. Our results demonstrate a similar heterogenous pattern of desmin staining as reported in cats and humans 
with HCM and expand on these earlier findings, by documenting extensive disruption of the desmin cytoskeletal network 
including at the Z discs and ID together with cytoplasmic accumulation of aggregates containing desmin and its chaper-
one αB-crystallin in cardiomyocytes from cats with HCM (Fig 2). Additionally, our cepstral analysis supports the disorgan-
isation of the IF network in HCM cats identified by immunostaining which is important since a key aim of our study was 
to determine the impact of IF disorganisation on other key associated proteins (Fig 5). Furthermore, we show increased 
quantities of desmin and αB-crystallin in the HCM cats by western blot which may reflect overload of the PQC system and 
failure to remove the accumulated aggregates (Fig 3), however we did not perform transcriptional analysis on these sam-
ples to ascertain increased synthesis as an alternative explanation for increased protein levels. Furthermore, proteasome 
function tests were not evaluated in this study to directly quantify proteasome activity and protein quality control function. 
Interestingly, the double staining of desmin and αB-crystallin in left ventricular myocardium from HCM cats  
(Fig 4) suggests that the protein expression is dysregulated at a cell autonomous level. It is possible that the upregulation 
of αB-crystallin in the HCM hearts is a compensatory response to disruption of the desmin since by acting as a chaperone 
αB-crystallin facilitates removal of disrupted desmin by the PQC system [77]. Given the crucial roles of the cytoskeleton in 
normal mitochondrial function, the disruption of the IF network we identified is likely to compromise mitochondrial perfor-
mance in HCM cats. Indeed, a transmission electron microscopy study revealed changes in mitochondrial localisation and 
impaired mitochondria function comprising reduced mitochondrial oxidative phosphorylation and increased reactive oxy-
gen species release in cats with HCM [2]. Taken together these findings may suggest that disorganisation of the desmin 
network together with accumulation of toxic desmin rich aggregates potentially plays a significant role in the pathology of 
feline HCM [59].

Studies in human cardiomyopathy patients show that an additional consequence of IF disorganisation is abnormal 
localisation of important ID proteins including β-catenin, N-cadherin, desmoplakin and connexin43 which are involved in 
cell adhesion, mechanotransduction, cell-cell communication and electrical coupling [13–17,29,32,39,61,78–81].

We report for the first-time a complete absence and/or a diffuse pattern of expression of β-catenin and N-cadherin pro-
teins at the ID and the displacement of β-catenin to the lateral side of cardiomyocytes in cats with HCM (Fig 6 and 8). The 
immunoblotting result suggests that the absence of β-catenin at the ID is not due to reduced protein expression. Further-
more, the results from our double immunostaining (Fig 7) suggest that aberrant β-catenin localisation appeared to occur 
following the loss of desmin at the intercalated discs which would be consistent with the premise that loss of IF organisa-
tion at the ID may potentially be responsible for disruption of key ID proteins.

We also report abnormal localisation of connexin43 in HCM cats with reduced expression at the ID and significant 
peripheral staining along the lateral sides of the cardiomyocyte (Fig 10). These findings are consistent with observations 
in human patients with HCM and restrictive cardiomyopathy [14,15,29]. A similar pattern of abnormal localisation has also 
recently been described in cats with HCM and restrictive cardiomyopathy [82]. Importantly our double immunostaining 
showed that the abnormal localization of connexin43 matched that of desmin suggesting a close association between the 
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two proteins as previously proposed based on immunoprecipitation assays in cardiomyocytes from human patients with 
chronic heart disease (Fig 11) [48]. However, without mechanistic experiments such as knockdown or rescue studies we 
cannot say for certain if the miss-location of these important junctional proteins is a consequence of desmin disruption. 
Interestingly, an early immunohistochemical study of connexin43 in Maine coon cats from a research colony with HCM 
due to the MYBPC3-A31P mutation revealed no changes in the localisation of connexin43 [83]. It is unclear whether this 
difference is associated with breed or the specific MYBPC3 mutation or related to the difference in degree of disease pro-
gression between the cats in our study and theirs.

Connexin43 is the main protein forming the gap junctions in ventricular cardiomyocytes which conduct ion currents 
between cardiomyocytes. Alterations in connexin43 distribution may therefore impair electrical conduction between 
adjacent cardiomyocytes. For instance, in two transgenic rabbit models of HCM, altered cellular connexin43 organization 
including lateralisation was associated with repolarisation abnormalities and increase arrhythmia propensity [84,85].

Sudden cardiac death (SCD) presumably due to a fatal arrhythmia is a common finding in cats with HCM and may in 
fact be the first manifestation of the disease [45]. Similarly, in the human population, HCM is considered the most common 
SCD-related cardiomyopathy and is one of the most common causes of SCD in young athletes [86]. Our finding of signifi-
cantly altered distribution of connexin43 in cats with HCM may provide at least in part a molecular explanation for the high 
incidence of SCD in cats with this disease as has been suggested for human HCM [15].

The increased prevalence of male cats in the HCM group compared to control was not surprising as a male sex predis-
position is well recognised in the feline population [7].

Our results identified abnormal aggregates comprising desmin and its chaperone αB-crystallin in cats with HCM. In 
addition, the abnormal localisation of key protein components of the ID in the HCM cats could impair the mechanical and 
electrical coupling in the heart (Fig 12). Together these effects may at least in part account for some of the clinicopath-
ological findings characteristic of HCM including arrhythmogenesis and SCD. There are some limitations to our study. 
First, the immunohistochemistry and Western blots were performed on LV tissue taken at a single time point in the dis-
ease process for each cat and the variation in results between the HCM cats may represent different stages of disease 
progression or differences associated with specific causative mutations, epigenetic changes, or environmental influences 
between cats. Second, although the increased quantity of desmin and αB-crystallin in the HCM cats most likely results 
from reduced degradation due to impaired PQC, increased production cannot be ruled out especially in the absence of 
transcriptional data. Third, even though similar findings are reported in humans and other animal models, the number of 
cats included was small such that the immunostaining for proteins, such as N-cadherin and connexin43, might not be fully 
representative of HCM in this species. Fourth, although the age between the control cats and HCM cats was not signifi-
cantly different, larger numbers of cats with a broad range of age should be used so as to critically appraise the possible 
impact of age on the function of PQC as aging has been associated with reduced capacity in PQC [87,88]. Additionally 
direct evaluation of proteasome function was not performed in this study. Fifth, post-translational modification of the pro-
teins (desmin, αB-crystallin, β-catenin, N-cadherin, and connexin43), which would give a more in-depth understanding to 
how these proteins were regulated, was not investigated in this study. For example, in the case of desmin it was shown 
that phosphorylation by GSK3 is a key step for desmin aggregation and turnover [89,90]. Sixth, a key protein component 
of the desmosome, desmoplakin, was not evaluated due to our inability to find an antibody that recognised the feline 
protein. Unfortunately, this is a common problem when working with feline tissue and precluded the assessment of all the 
main proteins at the ID. Seventh, it is important to emphasise that the cellular changes described here are not unique to 
HCM but can occur in other forms of cardiac disease [17,19,20].
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