Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Occipital foramina development involves localised regulation of mesenchyme proliferation and is independent of apoptosis (2015)
Journal Article
Akbareian, S. E., Pitsillides, A. A., Macharia, R. G., & McGonnell, I. M. (2015). Occipital foramina development involves localised regulation of mesenchyme proliferation and is independent of apoptosis. Journal of Anatomy, 226(6), 560-574. https://doi.org/10.1111/joa.12304

Cranial foramina are holes within the skull, formed during development, allowing entry and exit of blood vessels and nerves. Once formed they must remain open, due to the vital structures they contain, i.e. optic nerves, jugular vein, carotid artery,... Read More about Occipital foramina development involves localised regulation of mesenchyme proliferation and is independent of apoptosis.

Symmorphosis through Dietary Regulation: A Combinatorial Role for Proteolysis, Autophagy and Protein Synthesis in Normalising Muscle Metabolism and Function of Hypertrophic Mice after Acute Starvation (2015)
Journal Article
Collins-Hooper, H., Sartori, R., Giallourou, N., Matsakas, A., Mitchell, R., Mararenkova, H., …Patel, K. (2015). Symmorphosis through Dietary Regulation: A Combinatorial Role for Proteolysis, Autophagy and Protein Synthesis in Normalising Muscle Metabolism and Function of Hypertrophic Mice after Acute Starvation. PLoS ONE, 10(3), https://doi.org/10.1371/journal.pone.0120524

Animals are imbued with adaptive mechanisms spanning from the tissue/organ to the cellular scale which insure that processes of homeostasis are preserved in the landscape of size change. However we and others have postulated that the degree of adapta... Read More about Symmorphosis through Dietary Regulation: A Combinatorial Role for Proteolysis, Autophagy and Protein Synthesis in Normalising Muscle Metabolism and Function of Hypertrophic Mice after Acute Starvation.