Dispersal patterns and influence of air travel during the global expansion of SARS-CoV-2 variants of concern
(2024)
Journal Article
Tegally,, H., Wilkinson,, E., Tsui,, . J. L. -., Moir,, M., Martin,, D., Brito,, A. F., …de Oliveira, T. (2024). Dispersal patterns and influence of air travel during the global expansion of SARS-CoV-2 variants of concern. Cell, https://doi.org/10.1016/j.cell.2023.06.001
All Outputs (33)
Phylodynamic analysis of foot-and-mouth disease virus evolution in Mar Chiquita, Argentina (2024)
Journal Article
Calderón, L., Cabanne, G., Marcos, A., Novo, S., Torres, C., Perez, A., …König, G. (2024). Phylodynamic analysis of foot-and-mouth disease virus evolution in Mar Chiquita, Argentina. Archives of Virology, 169(5), https://doi.org/10.1007/s00705-024-06028-0
Characterisation of the genomic sequence of a circo-like virus and of three chaphamaparvoviruses detected in mute swan (Cygnus olor) (2024)
Journal Article
Francois, S., Hill, S., Perrins, C., & Pybus, O. (2024). Characterisation of the genomic sequence of a circo-like virus and of three chaphamaparvoviruses detected in mute swan (Cygnus olor). Microbiology Resource Announcements, https://doi.org/10.1128/mra.01186-23
Synchrony of Bird Migration with Global Dispersal of Avian Influenza Reveals Exposed Bird Orders (2024)
Journal Article
Yang, Q., Wang, B., Lemey, P., Dong, L., Mu, T., Wiebe, R. A., …Grenfell, B. (2024). Synchrony of Bird Migration with Global Dispersal of Avian Influenza Reveals Exposed Bird Orders. Nature Communications, 15(1), https://doi.org/10.1038/s41467-024-45462-1Highly pathogenic avian influenza virus (HPAIV) A H5, particularly clade 2.3.4.4, has caused worldwide outbreaks in domestic poultry, occasional spillover to humans, and increasing deaths of diverse species of wild birds since 2014. Wild bird migrati... Read More about Synchrony of Bird Migration with Global Dispersal of Avian Influenza Reveals Exposed Bird Orders.
Ancient chicken remains reveal the origins of virulence in Marek's disease virus (2023)
Journal Article
Fiddaman, S., Dimopoulos, E., Lebrasseur, O., du Plessis, L., Vrancken, B., Charlton, S., …Frantz, L. (2023). Ancient chicken remains reveal the origins of virulence in Marek's disease virus. Science, 382(6676), 1276-1281. https://doi.org/10.1126/science.adg2238The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experien... Read More about Ancient chicken remains reveal the origins of virulence in Marek's disease virus.
SARS-CoV-2 evolution in the Omicron era (2023)
Journal Article
Roemer, C., Sheward, D., Hisner, R., Gueli, F., Sakaguchi, H., Frohberg, N., …Peacock, T. (2023). SARS-CoV-2 evolution in the Omicron era. Nature Microbiology, 8(11), 1952-1959. https://doi.org/10.1038/s41564-023-01504-wSince SARS-CoV-2 BA.5 (Omicron) emerged and spread in 2022, Omicron lineages have markedly diversified. Here we review the evolutionary trajectories and processes that underpin the emergence of these lineages, and identify the most prevalent sublinea... Read More about SARS-CoV-2 evolution in the Omicron era.
Genetic diversity, recombination and cross-species transmission of a waterbird gammacoronavirus in the wild (2023)
Journal Article
François, S., Nazki, S., Vickers, S. H., Fournié, G., Perrins, C. M., Broadbent, A. J., …Hill, S. C. (2023). Genetic diversity, recombination and cross-species transmission of a waterbird gammacoronavirus in the wild. Journal of General Virology, https://doi.org/10.1099/jgv.0.001883
Comparing the evolutionary dynamics of predominant SARS-CoV-2 virus lineages co-circulating in Mexico (2023)
Journal Article
Castelán-Sánchez, H., Delaye, L., Inward, R., Dellicour, S., Gutierrez, B., de la Vina, N., …Zamudio, M. (2023). Comparing the evolutionary dynamics of predominant SARS-CoV-2 virus lineages co-circulating in Mexico. eLife, 12, https://doi.org/10.7554/eLife.82069Over 200 different SARS-CoV-2 lineages have been observed in Mexico by November 2021. To investigate lineage replacement dynamics, we applied a phylodynamic approach and explored the evolutionary trajectories of five dominant lineages that circulated... Read More about Comparing the evolutionary dynamics of predominant SARS-CoV-2 virus lineages co-circulating in Mexico.
Identification of Evolutionary Trajectories Shared across Human Betacoronaviruses (2023)
Journal Article
Escalera-Zamudio, M., Kosakovsky Pond, S. L., Martínez de la Viña, N., Gutiérrez, B., Inward, R. P. D., Thézé, J., …Hulswit, R. J. G. (2023). Identification of Evolutionary Trajectories Shared across Human Betacoronaviruses. Genome Biology and Evolution, 15(6), https://doi.org/10.1093/gbe/evad076Comparing the evolution of distantly related viruses can provide insights into common adaptive processes related to shared ecological niches. Phylogenetic approaches, coupled with other molecular evolution tools, can help identify mutations informati... Read More about Identification of Evolutionary Trajectories Shared across Human Betacoronaviruses.
Implementation of Genomic Surveillance of SARS-CoV-2 in the Caribbean: Lessons Learned for Sustainability in Resource-Limited Settings (2023)
Journal Article
Sahadeo, N. S. D., Nicholls, S., Moreira, F. R. R., O'Toole, Á., Ramkissoon, V., Whittaker, C., …Carrington, C. V. F. (2023). Implementation of Genomic Surveillance of SARS-CoV-2 in the Caribbean: Lessons Learned for Sustainability in Resource-Limited Settings. The Lancet Global Health, https://doi.org/10.1371/journal.pgph.0001455
Bidirectional Movement of Emerging H5N8 Avian Influenza Viruses Between Europe and Asia via Migratory Birds Since Early 2020 (2023)
Journal Article
Zhang, G., Li, B., Raghwani, J., Vrancken, B., Jia, R., Hill, S., …Tian, H. (2023). Bidirectional Movement of Emerging H5N8 Avian Influenza Viruses Between Europe and Asia via Migratory Birds Since Early 2020. Molecular Biology and Evolution, 40(2), https://doi.org/10.1093/molbev/msad019
Global disparities in SARS-CoV-2 genomic surveillance (2022)
Journal Article
Bulgarian SARS-CoV-2 Sequencing Gr, Communicable Dis Genomics Network, COVID-19 Impact Project, Danish Covid-19 Genome Consortium, Fiocruz COVID-19 Genomic Surveilla, GISAID Core Curation Team, …Faria, N. (2022). Global disparities in SARS-CoV-2 genomic surveillance. Nature Communications, 13(1), https://doi.org/10.1038/s41467-022-33713-yGenomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared vi... Read More about Global disparities in SARS-CoV-2 genomic surveillance.
Seasonal dynamics of the wild rodent faecal virome (2022)
Journal Article
Raghwani, J., Faust, C. L., François, S., Nguyen, D., Marsh, K., Raulo, A., …Pybus, O. G. (2023). Seasonal dynamics of the wild rodent faecal virome. Molecular Ecology, https://doi.org/10.1111/mec.16778Viral discovery studies in wild animals often rely on cross-sectional surveys at a single time point. As a result, our understanding of the temporal stability of wild animal viromes remains poorly resolved. While studies of single host-virus systems... Read More about Seasonal dynamics of the wild rodent faecal virome.
Impact of host age on viral and bacterial communities in a waterbird population (2022)
Journal Article
Hill, S. C., François, S., Thézé, J., Smith, A., Simmonds, P., Perrins, C., …Pybus, O. (in press). Impact of host age on viral and bacterial communities in a waterbird population. ISME Journal,Wildlife harbour pathogens that can harm human or livestock health and are the source of most emerging infectious diseases. It is rarely considered how changes in wildlife population age-structures or how age-stratified behaviours might alter the lev... Read More about Impact of host age on viral and bacterial communities in a waterbird population.
Endogenous Viral Elements in Shrew Genomes Provide Insights into Pestivirus Ancient History (2022)
Journal Article
Li, Y., Bletsa, M., Zisi, Z., Boonen, I., Gryseels, S., Kafetzopoulou, L., …Lequime, S. (2022). Endogenous Viral Elements in Shrew Genomes Provide Insights into Pestivirus Ancient History. Molecular Biology and Evolution, 39(10), https://doi.org/10.1093/molbev/msac190As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for cali... Read More about Endogenous Viral Elements in Shrew Genomes Provide Insights into Pestivirus Ancient History.
Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl (2022)
Journal Article
Wille, M., Tolf, C., Latorre-Margalef, N., Fouchier, R., Halpin, R., Wentworth, D., …Waldenstrom, J. (2022). Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl. Virus Evolution, 8(2), https://doi.org/10.1093/ve/veac074Avian influenza A virus (AIV) is ubiquitous in waterfowl and is detected annually at high prevalence in waterfowl during the Northern Hemisphere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detecte... Read More about Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl.
The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK (2022)
Journal Article
Hill, V., Du Plessis, L., Peacock, T., Aggarwal, D., Colquhoun, R., Carabelli, A., …Rambaut, A. (2022). The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evolution, 8(2), https://doi.org/10.1093/ve/veac080The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of inf... Read More about The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK.
Molecular and genomic investigation of an urban outbreak of dengue serotype 2 in Angola, 2017-2019 (2022)
Journal Article
Neto, Z., Martinez, P., Hill, S., Jandondo, D., Thézé, J., Mirandela, M., …Afonso, J. (2022). Molecular and genomic investigation of an urban outbreak of dengue serotype 2 in Angola, 2017-2019. PLoS Neglected Tropical Diseases, https://doi.org/10.1371/journal.pntd.0010255
Understanding Sabiá virus infections (Brazilian mammarenavirus) (2022)
Journal Article
Nastri, A. C., Duarte-Neto, A. N., Casadio, L. V. B., Souza, W. M. D., Claro, I. M., Manuli, E. R., …Levin, A. S. (2022). Understanding Sabiá virus infections (Brazilian mammarenavirus). Travel Medicine and Infectious Disease, 48, 102351. https://doi.org/10.1016/j.tmaid.2022.102351
Phylogenetic and phylodynamic approaches to understanding and combating the SARS-CoV-2 pandemic. (2022)
Journal Article
Attwood, S., Hill, S., David, A., Connor, T., & Pybus, O. (2022). Phylogenetic and phylodynamic approaches to understanding and combating the SARS-CoV-2 pandemic. Nature Reviews Genetics, https://doi.org/10.1038/+s41576-022-00483-8