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Abstract 
Today, brucellosis is the most common global bacterial zoonosis, bringing with it a range of 
significant health and economic consequences, yet it is rarely identified from the archaeological 
record. Detection and understanding of past zoonoses could be improved by triangulating evidence 
and proxies generated through different approaches. The complex socio-ecological systems that 
support zoonoses involve humans, animals, and pathogens interacting within specific environmental 
and cultural contexts, and as such there is a diversity of potential datasets that can be targeted. To 
capture this, in this paper we consider how to approach the study of zoonotic brucellosis in the past 
from a One Health perspective, one which explicitly acknowledges the health link between people, 
animals and environments (both physical and cultural).  One Health research is explicitly 
interdisciplinary and conceptually moves away from an anthropocentric approach, allowing the 
component parts to be considered in holistic and integrated ways to deliver more comprehensive 
understanding. To this end, in this paper we review the methods, selected evidence and potential 
for past brucellosis identification and understanding, focussing on osteological markers in humans 
and animals, historical, biomolecular and epidemiological approaches. We also present an agenda 
and potential for future research. 
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1 Introduction 

 
Brucellosis is a disease of global significance today, with major human and animal health and 
economic impacts. It is the most common bacterial zoonosis, with >500,000 new cases reported each 
year (Pappas et al., 2006), although the true incidence is estimated at 5-12.5 million cases annually 
(Hull and Schumaker, 2018). The causative agents are bacteria of the genus Brucella, which infect a 
range of mammalian hosts (Moreno, 2014). Brucella species are gram-negative, facultative 
aerobic, non-motile coccoid or rod-shaped aerobic bacteria which replicate within phagocytic cells of 
the host reticuloendothelial system (species and their preferred hosts are summarised in Appendix 
S1 and Table S1). 

 
Of the Brucella species known, those infecting domestic animals are generally both zoonotic and 
most virulent (with the exception of B. ovis) compared to strains affecting wild animals (Moreno, 
2014). Species that are generally pathogenic to humans are B. melitensis, B. abortus and biovars 1 
and 3 of B. suis. They exploit the reproductive cycle of their infected hosts, multiplying in the 
placenta inducing abortion, in mammary glands following pregnancy and shedding through milk, 
then mainly infecting other animals through ingestion (Díaz Aparicio, 2013). Human infection 
normally occurs through ingestion of unpasteurized dairy products and direct contact with infected 
animals (Moreno, 2014). 

 
Brucellosis is thus a very common zoonotic infection, yet it is rarely identified from the archaeological 
record. Detection and understanding of past zoonoses could be improved by triangulating evidence 
and proxies generated through different approaches. The complex socio- ecological systems that 
support zoonoses involve humans, animals, and pathogens interacting within specific environmental 
and cultural contexts, and as such there is a diversity of potential datasets that can be targeted. To 
capture this, in this paper we consider how to approach the study of zoonotic brucellosis in antiquity 
from a One Health perspective, one which explicitly acknowledges the health link between people, 
animals and environments (both physical and cultural). In epidemiology, the ‘epidemiological triad’ of 
hosts, pathogens and environment is commonly used to 
summarise the factors that influence infections (Figure 1A). Studies of archaeological human remains 
have long drawn on the biocultural paradigm to emphasize that these factors can only be fully 
understood when placed within the context of culture and the constructed human niche (Figure 1B). 
The One Health approach is explicitly interdisciplinary and emphasizes communication and 
collaboration across multiple sectors in the delivery of improved health outcomes (Figure 1C). It also 
ensures that the component factors influencing infections are considered in holistic and integrated 
ways to deliver more comprehensive understanding than siloed approaches by single disciplines 
(Lebov et al., 2017). To this end, here we will review the methods, selected evidence and potential 
for past brucellosis identification, focussing on osteological markers in humans and animals, 
historical, biomolecular and epidemiological approaches (Figure 1D). We also present an agenda and 
potential for future research. 

 
2 Brucellosis and human palaeopathology 

 
Brucella causes systemic infections in humans; any organ of the body may be affected with bacteria 
localizing intracellularly in the immune system, transported through lymph and haematogenously 
spread to the spine and knee, sacroiliac and interphalangeal joints, amongst others (Buzgan et al., 
2010; Turan et al., 2011). However, a mouse model suggests dispersal of bacteria throughout the 
body results directly in localization in osteoarticulations suggesting that intermediate tissues may 
not be necessary for development of skeletal brucellosis (Magnani et al., 2013) as previously 
thought. Many patients experience joint pain that is often associated with joint swelling and 
development of septic arthritis, that is, infection of the joint and associated tissues. Although 



 

brucellosis can affect any region of the spine, it most often affects the lumbar vertebrae with 
concomitant lower back pain (Buzgan et al., 2010; Madkour et al., 1988; Turan et al., 2011). 
Localization of the disease in the sacroiliac joint(s) is also often accompanied by sciatica and back 
pain (Corbel, 2006; Priest et al., 2008). Fatality rate in humans is very low, most often following 
development of brucellar endocarditis (Buzgan et al., 2010; Hull and Schumaker, 2018). 

 
Skeletal manifestations of brucellosis are diverse and non-specific with potential for presentation of 
many atypical forms (Corbel 2006). The prevalence of complications varies among clinical studies 
ranging from ten to eighty per cent of brucellosis patients (Mehanic et al., 2012; Turan et al., 2011). 
Vertebral body lesions are resorptive in nature early in the disease process, with more bone 
deposition and sclerosis in healing stages (Lifeso et al. 1985) than is seen in tuberculosis, a disease 
with which brucellosis is often misdiagnosed (Buzgan et al., 2010; Glasgow, 1976). Vertebral 
destruction is usually less severe in brucellosis than in tuberculosis (Chelli Bouaziz et al., 2008). In 
addition, clinical manifestations vary with age of the individual: monoarthritis of knee and hip in 
children, sacroiliitis in children and young adults, and spondylitis in older adults (Chelli Bouaziz et al., 
2008; Esmaeilnejad-Ganji and Esmaeilnejad-Ganji, 2019). Thus diseases included in the differential 
diagnosis may differ depending on age of the individual and osseous elements affected. 

 
Monoarticular involvement of peripheral joints, seen mostly in children in the knee results in bone 
resorption starting at the joint capsule margins. However as complete joint destruction is unusual 
(al-Shahed et al., 1994), we might expect brucellar osteoarthrosis to be less severe and thus less 
visible in the archaeological record and thus more difficult to diagnose definitively than diseases 
such as tuberculosis and osteomyelitis that can cause more extensive bone destruction. As with 
peripheral arthropathy, sacroiliitis is seen as irregular areas of resorption on articular facets. In 
clinical setting it is visualized radiographically and through CT and MR imaging as widening and 
blurring of the joint space (Ariza et al., 1993). However, similar lesions are also seen in gout and 
psoriatic arthropathy (Dayan et al., 2009). To our knowledge, sacroiliitis has not yet been linked 
specifically with brucellosis in archaeological contexts. 

 
Brucellar spondyloarthropathy, seen in older adults, primarily affects the lumbar spine, although all 
regions are possible. Resorption is exhibited on the anterior superior margin of vertebral body below 
attachment site of the annulus fibrosis of the intervertebral disc. Resorptive lesions develop slowly, 
with sclerosis, increased bone density and thickening of trabeculae (Capasso, 1999; D'Anastasio et 
al., 2009, 2011). Brucellar lesions of vertebral body endplates (Madkour et al., 1988) have been 
noted clinically. 

 
Although most of the changes are resorptive as seen above, bone deposition is seen in the 
development of anterior bone spurs, the ‘parrot beak’ osteophytes projecting from the inferior end 
of the vertebral body zone of resorption. For beak osteophytes and Schmorl's nodes, differential 
diagnosis should include herniation of intervertebral disc or trauma (Aufderheide and Rodríguez- 
Martín, 1998). Development of paravertebral abscesses (Ariza et al., 1985) including psoas abscess 
(Turan et al., 2011) similar to that seen in psoas fascia calcification of tuberculosis (Ortner 2003: 232; 
Roberts and Buikstra, 2019) have also been observed clinically but less frequently than in 
tuberculosis (Corbel, 2006). Deposition of new woven bone may be present on the visceral surfaces 
of ribs and the anterior and lateral surfaces of vertebral bodies. Presence of both resorption and 
deposition in the same bone counter-indicates tuberculosis, unless the new bone is solely for 
vertebral stabilisation following vertebral body collapse or joint destruction (Mehanic et al. 2012; 
Roberts and Buikstra, 2019; Waldron 2009). In a Turkish clinical study of 2018 cases, the most 
common laboratory result was anaemia (Buzgan et al., 2010). Thus, it may be useful to add 
indicators of anaemia (cribra orbitalia and porotic hyperostosis) to the list of potentially diagnostic 
criteria in palaeopathological studies. 



 

 

In bone, the feature most commonly observed is Pedro-Pons' sign in vertebrae, which is resorption 
of the anterior superior margin of one or several vertebrae with underlying sclerosis (Aufderheide 
and Rodríguez-Martín, 1998; Glasgow 1976; Mehanic et al., 2012; Roberts and Buikstra, 2019; 
Waldron, 2009). Other skeletal changes include subperiosteal new bone on anterior surfaces of ribs 
and vertebral bodies (D’Anastasio et al., 2011) and resorption of vertebral endplates (Chelli Bouaziz 
et al., 2008; Madkour et al., 1988). Any resorptive lesions thought to be pathogen-related on 
sacroiliac joint surfaces (Dayan et al., 2009) must be distinguished from those that are age-related. 
Thus, for adults, methods of age estimation other than that of auricular surface morphology should 
be used in cases of suspected brucellosis. Skeletal region targeted varies with the age-at-death of 
the individual observed: peripheral arthritis and sacroiliitis in children and young adults, and 
spondyloarthropathy in older adults (Chelli Bouaziz et al., 2008; Esmaeilnejad-Ganji and 
Esmaeilnejad-Ganji, 2019) although length of chronic infection may also play a part in the 
predominance of spinal changes in older individuals. In his macroscopic analysis of vertebral lesions 
from medieval Wharram Percy, England, Mays (2007) takes a conservative approach, suggesting that 
without at least two categories of evidence (one being biomolecular) diagnosis must be tentative. 

 
Good bone preservation and recovery of as much of each skeleton as possible are the ideal for 
securing a diagnosis. If death occurs early in disease progression, bony changes may not be 
sufficiently developed for accurate diagnosis. Because of the variability of disease expression we 
cannot assume that all cases of brucellosis will lead to advanced and pathognomonic changes in 
bone, nor that an infected individual, in life, exhibited skeletal brucellosis. Additionally, in a diseased 
individual, presence of one illness can decrease immune function increasing risk of co-infection. If the 
coinfecting organism also involves the skeletal system, bone morphology and pattern of lesion 
location may reflect neither of the infections adequately for definitive diagnosis (Christensen et al., 
2013; de Boer et al., 2016). Thus, any estimate in the archaeological record must be considered an 
underestimate of the true prevalence of brucellosis. Even with the above caveats and difficulties, 
human skeletons from past populations have been identified as having evidence of Brucella infection 
(e.g. Table 1). 

 
3 Brucellosis and animal palaeopathology 

 
In animals, brucellosis is a sub-acute or chronic disease (Corbel, 2006). The bacteria may enter the 
body via the gastrointestinal tract, inhalation or conjunctiva, and once they have accessed the 
circulatory system may spread and cause bacteraemia (Hull and Schumaker, 2018), then settle in the 
reproductive or musculoskeletal systems (Glynn and Lynn, 2008). In terms of the impact on 
reproductive tissues, in females infection frequently causes abortion, a key clinical sign of 
brucellosis, and in males it causes epididymitis and orchitis (Poester et al., 2013). 

 
Of relevance to osteoarchaeological identification, Brucella organisms can also localise in bones, 
especially vertebrae, and synovial structures such as joints, bursae and tendon sheaths causing 
inflammation and spill-over of infection and inflammation from these sites. The latter can impact on 
adjacent bone resulting in characteristic focally extensive periosteal responses that can be identified 
in skeletal remains (Table 2). Localisation in and inflammation of bursae is well known in horses, in 
conditions such as ‘fistulous withers’ or ‘poll evil’ (Denny, 1973), in cattle and, less commonly, sheep 
and goats with carpal bursitis (carpal hygromas) (Ramadan et al., 1991). In goats and sheep, arthritis 
may also occur as a rare clinical sign of B. melitensis infection (Corbel, 2006). Arthritis affecting the 
larger limb joints as well as lumbar vertebral lesions and spondylitis are commonly described in pigs 
with B. suis infection (Schlafer and Foster, 2016). 



 

Despite these well-documented impacts of brucellosis on the skeletal system of animals, the fact 
that these morphological responses simulate those of other bacterial infections within joints and 
bone (Lignereux and Peters 1999) presents a key challenge to zooarchaeological investigations. 
Limited modern comparative data on the skeletal manifestation of infectious diseases in domestic 
animals limits ability to provide definitive identifications, although some propositions have been 
forwarded in the palaeopathological literature on the separation of diseases, for example Baker and 
Brothwell (1980, 77) suggest that there is greater periosteal proliferation in brucellosis than 
tuberculosis. There are no definitive published cases of archaeological animal brucellosis (Table 3). 

 
Palaeopathological approaches should focus on detailed description and development of differential 
diagnoses of possible infectious agents, something easier attempted in more complete articulating 
skeletons, with subsequent biomolecular analysis to refine the disease identification. Analysis of 
disarticulated material should focus on the identification and quantification of potential markers of 
infection across the skeleton, and assessment of their correlation with locations of known skeletal 
involvement (Table 3), again supported with biomolecular analysis. Brucellosis also causes late foetal 
abortion in some taxa, and foetal age estimation of very young remains may therefore give clues as 
to the potential presence of an infectious agent. Given the range of other pathogens that cause late 
term abortions in domestic livestock (Tables S2), however, other evidence (e.g. biomolecular) would 
be needed to confirm an infectious agent. 

 
4 Biomolecular evidence for Brucella species in the archaeological record 

 
Reports of confirmed Brucella species retrieved from archaeological remains are limited (Table 4). 
The earliest DNA evidence comes from the Early Bronze Age North Caucasus (c.3700-3300 BC). 
During a study of mitochondrial DNA haplogroups and human origins in this region conducted on 
burials of the Maikop culture, a human burial from Novosvobodnaya was found to have generated 
sequences from Brucella abortus (Sokolov et al., 2016). The authors used a high-throughput 
sequencing approach rather than individual PCR methods. The DNA fragments obtained were short, 
in the region of 51-75 bp long and exhibited many C to T transitions, observations consistent with 
degraded ancient DNA. The isolation of B. abortus from these individuals is consistent with the 
known farming practices of Maikop culture peoples, who kept predominantly pigs and cattle, with 
the latter being the preferential host of B. abortus. 

 
Mutolo et al. (2011) successfully amplified Brucella genomic DNA from two human skeletons from 
medieval Butrint, Albania (Table 4). The PCR targets used were the multi-copy element IS711 
(formerly known as IS6510) (Ouahrani et al., 1993) and DNA coding for the 31kDa membrane protein 
Bcsp31. Short templates were targeted; 58bp in the case of IS711 and 59 bp in the Bcsp31 PCR. They 
found that burial 4015 was positive for both loci and that burial 2272 was positive only with the 
more sensitive IS711 method, suggesting poorer DNA preservation in this individual. As infection with 
tuberculosis was part of the differential diagnosis, the remains were also tested for three MTB 
complex loci which have been used in ancient DNA (aDNA) studies for some years, namely IS6110, 
mtp40 and the oxyR pseudogene (e.g. Mays et al., 2001). All were negative. The authors were careful 
to apply tuberculosis PCR methods which would detect similarly degraded templates (62-65 bp) so 
that this mycobacterial pathogen should also have been detected in bone extracts, if present. 

 
Kay et al. (2014) also used a high-throughput approach (metagenomic shotgun sequencing) to study 
DNA extracted and amplified from a calcified abdominal nodule present in an adult male burial from 
Geridu, Sardinia (Table 4). The remains displayed lesions of DISH (diffuse idiopathic skeletal 
hyperostosis) but were without obvious morphological evidence of brucellosis other than the 
presence of multiple calcified nodules, which have sometimes been associated with chronic 
brucellosis, amongst other pathologies (Arcomano et al., 1977; Sevilla-López et al., 2011). Using this 



 

unbiased approach (i.e. without target-specific amplification or capture) they managed to obtain 6.5 
fold coverage of a strain of B. melitensis from this individual. Further analysis with SNP and deletion 
typing confirmed that the medieval Geridu-1 isolate belonged to the Ether clade of B. melitensis, a 
lineage considered basal to the phylogenetic tree of the species (Pisarenko et al., 2018). 

 
In a recent publication using proteomic analysis, Greco et al. (2018) reported the presence of a 
specific peptide sequence associated with B. melitensis extracted from organic material preserved in 
a storage jar from an Egyptian site dating back to the 19th Dynasty (1295-1186 BC). Analysis of the 
cheese residues by UHPLC/high-resolution nanoESI-mass spectrometry showed this contained cow’s 
milk and either sheep or goats milk proteins. The peptide sequence the authors described as 
indicative of B. melitensis (GSIKER) could conceivably have originated from another organism, 
Coxiella burnetii, a Gram-negative organism affecting ruminants. Unfortunately, aDNA analysis was 
not undertaken to validate the proteomic findings. 

 
This author (GMT) has applied screening PCR methods for Brucella to all cases of human skeletal 
tuberculosis where lesions have suggested that it might be a differential diagnosis. Over the years, 
this has resulted in testing over 200 human cases and several dozen animal bones (e.g. Bendrey et 
al., 2008) but in only one instance has any evidence of Brucella DNA been detected. This observation 
was made in an adult female from Tyva, south Siberia (Table 4), where evidence of Mycobacterium 
bovis had already been found in specimens taken from lumbar vertebrae (L3/L4) displaying the classic 
spinal lesions of tuberculosis (Murphy et al., 2009). The identification of Brucella DNA was a late 
observation made after the completion of the main aDNA analyses which had focused on the typing 
of M. bovis isolates retrieved from four burials of nomadic pastoralists. These individuals 
spent their lives in close proximity to a number of herd species. The amplification of Brucella 
pathogen DNA was a reproducible observation, but we were not able to pursue this at the time as 
the sample had been returned for reburial. However, a gel run of the 144 bp amplicon from the 
IS711 PCR product was subsequently published in a palaeopathology review (Donoghue, 2008). 

 
5 Screening archaeological samples for Brucella species: points for consideration and future 

studies 

 
After the death of an individual or animal, postmortem action of endonucleases and microbial activity 
results in fragmentation of both host and pathogen DNA. Over time, the DNA may be further 
modified by chemical processes such as hydrolysis and oxidation (Lindahl and Nyberg, 1972). The soil 
environment often contains the presence of naturally occurring fixative acids and tannins. These can 
damage DNA over time or inhibit PCR reactions, if co-extracted (Sidstedt et al., 2015). Extracted 
aDNA may thus block PCR polymerases due to both intra and inter-strand nucleic acid cross-linking. 
Modification or loss of nucleotide bases, particularly depurination (Lindahl, 1993) may introduce 
errors which allow extension but then appear as nucleotide transitions when remnant DNA 
templates are amplified by PCR and used later for downstream validation measures like cloning and 
sequencing. The majority of miscoding changes involve C →T/U and G →A transitions (Taylor, 2014 
and references therein). 

 
The study of mycobacterial pathogens in the past has been a productive area of research. By 
protecting them from initial degradation, the waxy outer cell wall of mycobacterial species may be 
partly responsible for the number of reports of tuberculosis and leprosy in the literature. Brucella 
species have an atypical lipopolysaccharide (LPS) responsible for structural and functional integrity 
of the bacteria (Cardoso et al., 2006) but lack the mycolic acids and derivatives, which makes the 
mycobacterial cell membrane relatively impermeable and resilient (Brennan and Nikaido, 1995). The 
limited reports of Brucella in the bioarchaeological literature may thus be a consequence of a 
greater susceptibility to degradation. Further studies are needed to investigate this aspect in both 



 

human and faunal remains. Information on the association of the pathogen to skeletal lesions and 
uninvolved or distant skeletal elements is also minimal. The recovery of Brucella DNA from the 
Russian burial lacking obvious osteoarticular lesions mentioned above (Sokolov et al., 2016), implies 
sampling skeletal remains without lesions might be productive. A factor possibly favouring detection 
is the faster doubling time (3-4 hours) of the Brucella species and hence potential higher bacterial 
load compared to the slower doubling times of pathogenic mycobacteria such as M. bovis (16-20 
hours) M. tuberculosis (18-54 hrs) or M. leprae (14 days). Testing of skeletal lesions proposed as 
indicators of Brucella infection should also be undertaken. Some authors have suggested that lytic 
erosions on the anterior-superior aspect of the vertebral body are indicative of Brucellosis in 
archaeological cases (Exteberria, 1994; Curate, 2006). However, this is as yet unsupported by testing 
for the pathogen and an alternative cause, traumatic anterior disc herniation, has been suggested 
(Mays, 2007). Suggestions for aDNA studies are included in supporting information (Appendix S2). 

 
6 Perspectives from historical records 

 
Sub-disciplines of history have explored questions relating to medical history, human health, 
demography, agriculture and socio-economic experiences. However, brucellosis remains under- 
examined and rarely mentioned in historiography. It is not until the development of microbiology 
that this disease was identified explicitly in the historical record, although given what we know of its 
transmission, clinical manifestations and impacts, its likely presence and significance to past 
societies cannot be denied. Re-examination of source materials and their interpretations derived 
from across the separate fields of historical research have the potential to contribute to both the 
identification of the disease in the past and the cultural contextualisation of human-animal- 
environment relationships (Figure 1); examples and future research potential are included in 
Appendix S3. 

 
7 Exploring the dynamics of animal populations and Brucella transmission through 
epidemiological modelling 

 
Findings about the structure and management of domestic animal populations, the nature and 
intensity of animal-human interactions, and the trends in the consumption of animal products can 
also allow scientists to investigate the impact of those features on pathogens’ transmission 
dynamics, and in particular whether epidemiological conditions were met to support disease 
emergence and endemicity. Such an approach was adopted by Fournié et al. (2017) to explore the 
potential impact of the origins of animal husbandry on the emergence of zoonotic brucellosis. The 
Early Neolithic of the Zagros mountains was chosen as a case study for investigating past brucellosis 
emergence associated with early goat husbandry as there is strong indirect contextual evidence and 
probable human osteological evidence for the disease (Merrett 2002; 2004). Moreover, previous 
archaeological investigations had dated a sequence of site assemblages, and, for each of those sites, 
characterised the age and sex structure of managed goat populations based on the fusion of post- 
cranial bone remains (Zeder, 2008). Mathematical models simulating the dynamics of domestic goat 
populations were developed and fitted to these reconstructed goat demographic profiles in each 
site. Brucella transmission was then modelled to assess the likely effect of changes in goat 
population structure (Fournié et al., 2017). The models indicate that the pathogen could have been 
sustained, even for low levels of transmission, in small domestic goat populations that lie within the 
likely ranges estimated for these early farming settlements. This resulted from the creation of dense 
domestic goat populations, but also the decisions made by early goat farmers on the demographic 
composition of their herds. As goat farming evolved, some communities began to preferentially 
retain domestic female goats into adulthood in herds, and selectively cull male goats at a younger 
age. In this way people inadvertently created population demographic structures which would have 
increased the transmission potential of the pathogen among goats, as the infectious material 



 

excreted by females following abortion or full-term parturition is the main source of infection. 
Conditions were thus met for the maintenance of a permanent reservoir of zoonotic infection in 
close proximity to human settlements, exposing humans to greater risk of infection. 

 
Such an approach has several limitations, due to the nature of the data on which the models rely, and 
the assumptions about the transmission of Brucella, which are based on current knowledge about the 
disease epidemiology. However, these models can be used to generate hypotheses about factors 
promoting the circulation and maintenance of pathogens within domestic animal populations and 
their zoonotic transfer; hypotheses which could then be tested by other disciplines. 

 
8 Conclusions 

 
Although brucellosis is today’s most common bacterial zoonosis, it is only rarely identified in the 
past. It is notable, for example, that the Brucella melitensis sequenced draft genome from medieval 
Sardinia shows a close relationship with modern Italian strains indicating continuity of this disease 
on a regional basis (Kay et al., 2014), however this continuum through time is currently not visible to 
us. This is due to the diverse challenges of positively identifying the disease using current 
approaches. Attempts to build up a picture of past human-animal-pathogen relationships must 
engage with a range of evidence. We propose taking a One Health approach and triangulating 
evidence and proxies generated through different methods to improve detection of past zoonoses 
(Figure 1). Such an approach – integrating studies that are typically performed independently – will 
help maximise understanding for different diseases for which there is differential ability to identify 
accessible records of their presence. This interdisciplinary review has identified potential for the 
advancement of methods and integration of datasets. For both human and animal skeletons, 
researchers should be aware of the potential distribution of brucellosis lesions to support 
investigations, from which to develop differential diagnoses, and where potential cases are 
identified, samples should be subject to biomolecular analyses. The anthropological and 
epidemiological contextualisation of palaeopathological and biomolecular investigations can help to 
move beyond the description of suspected and evidenced cases of infection in humans and their 
animals in the distant past, towards the analysis of the factors promoting zoonotic disease 
emergence. The description and conceptualisation, through epidemiological modelling, of the 
contexts within which domestic animal populations are structured, managed and humans exposed 
to these animal populations, can be used to generate hypotheses about zoonotic disease emergence 
drivers. These hypotheses could then inform the design of osteological and genetic research studies, 
i.e. the choice of sites, time period and samples, allowing the testing of these hypotheses. 

 

 
 

Supporting information 
Appendix S1. Background to the genus Brucella 
Appendix S2. Suggestions for aDNA studies 
Appendix S3. Historical perspectives and potential 
Table S1. Brucella species and their preferred hosts. 
Table S2. Selected common infectious causes of abortion in domestic cattle, goats, sheep and pigs. 
Table S3. Primers and FAM labelled probe used in our screening PCR method. 
Table S4. Examples of historical approaches and evidence for potential case study examination of 
brucellosis in English history 



 

References 

 
al-Shahed SM, Sharif HS, Haddad MC, Aabed MY, Sammak BM, Mutairi MA. 1994. Imaging features 
of musculoskeletal brucellosis. RadioGraphics 14: 333-348. 

 
Arcomano JP, Pizzolato NF, Singer R, Zucker SM. 1977. A unique type of calcification in chronic 
Brucellosis. American Journal of Roentgenology 128: 135-137. 

 
Ariza J, Gudiol F, Valverde J, Pallarés R, Fernández-Viladrich P, Rufí G, Espadaler L, Fernández- 
Nogues. 1985. Brucellar Spondylitis: A detailed analysis based on current findings. Reviews of 
Infectious Diseases 7(5): 656-664. 

 
Ariza J, Pujol M, Valverde J, Nolla JM, Rufí G, Viladrich PF, Corredoira JM, Gudiol F. 1993. Brucellar 
sacroiliitis: findings in 63 episodes and current relevance. Clinical Infectious Diseases 16: 761-765. 

 
Aufderheide A, Rodríguez- Martín C. 1998. Human Paleopathology. Cambridge: Cambridge 
University Press. 

 
Baker J, Brothwell DR. 1980. Animal diseases in archaeology. London: Academic Press. 

 
Bendrey R, Cassidy JP, Bokovenko N, Lepetz S, Zaitseva GI. 2011. A possible case of ‘poll‐evil’ in an 
early Scythian horse skull from Arzhan 1, Tuva Republic, Central Asia. International Journal of 
Osteoarchaeology 21: 111-118. 

 
Bendrey R, Taylor GM, Bouwman AS, Cassidy JP. 2008. Suspected bacterial disease in two 
archaeological horse skeletons from southern England: palaeopathological and biomolecular studies. 
Journal of Archaeological Science 35: 1581-1590. 

 
Brennan PJ, Nikaido H. 1995. The envelope of mycobacteria. Annual Review Biochemistry 64: 29-63. 
Buzgan T, Karahocagil MK, Irmak H, Baran AI, Karsen H, Evirgen O, Akdeniz H. 2010. Clinical 
manifestations and complications in 1028 cases of brucellosis: A retrospective evaluation and review 
of the literature. International Journal of Infectious Diseases 14: e469-e478. 
doi:10.1016/j.ijid.2009.06.031 

 
Capasso L. 1999. Brucellosis at Herculaneum (79 AD). International Journal of Osteoarchaeology 9: 
277–288. 

 
Cardoso PG, Macedo GC, Azevedo V Oliveira SC. 2006. Brucella spp. Noncanonical LPS: structure, 
biosynthesis and interaction with host immune system. Microbial Cell Factories 5: 13. 
doi: 10.1186/1475-2859-5-13. 

 
Chelli Bouaziz M, Ladeb MF, Chakroun M, Chaabane S. 2008. Spinal brucellosis: A review. Skeletal 
Radiology 37: 785-790. doi 10.1007/s00256-007-0371-x. 

 
Christensen T, Martínez-Lavín M, Peneda C. 2013. Periostitis and osteolysis in a Medieval skeleton 
from South-West Hungary: (Leprosy, treponematosis, tuberculosis or hypertrophic 
osteoarthropathy) A diagnostic challenge! International Journal of Osteoarchaeology 23(1): 69-82. 

 
Corbel M. 2006. Brucellosis in Humans and Animals. WHO: Geneva. 



 

Craig LE, Dittmer KE, Thompson KG. 2016. Bones and joints. In, Maxie MG (ed.) Jubb, Kennedy, and 
Palmer’s Pathology of Domestic Animals. Sixth edition. Volume 1. Elsevier: St. Louis; 16–163. 

 
Curate F. 2006. Two possible cases of brucellosis from a Clarist monastery in Alácer do Sal, southern 
Portugal. International Journal of Osteoarchaeology 16: 453–458. 

 
D'Anastasio R, Zipfel B, Moggi-Cecchi J, Stanyon R, Capasso L. 2009. Possible brucellosis in an early 
hominin skeleton from Sterkfontein, South Africa. PLoS ONE 4: e6439. 

 
D'Anastasio R, Staniscia T, Milia ML, Manzoli L, Capasso L. 2011. Origin, evolution and 
paleoepidemiology of brucellosis. Epidemiology and Infection 139: 149-156. 

 
Dayan L, Deyev S, Palma L, Rozen N. 2009. Long-standing, neglected sacroiliitis with remarked sacro- 
iliac degenerative changes as a result of Brucella spp. infection. The Spine Journal 9: e1-e4. doi: 
10.1016/j.spinee.2008.03.011. 

 
de Boer H, Van der Merwe L. 2016. Diagnostic dry bone histology in human paleopathology. Clinical 
Anatomy 29(7): 831-843. 

 
Díaz Aparicio ED. 2013. Epidemiology of brucellosis in domestic animals caused by Brucella 
melitensis, Brucella suis and Brucella abortus. Revue scientifique et technique - Office international 
des epizooties 32: 53-60. 

Denny HR. 1973. A review of brucellosis in the horse. Equine Veterinary Journal 5: 121-125. 

Donoghue HD. 2008. Molecular palaeopathology of human infectious disease. In: Pinhasi, R and 
Mays, S, (eds.) Advances in human palaeopathology. John Wiley & Sons Ltd: Chichester; 147-176. 

 
Esmaeilnejad-Ganji SM, Esmaeilnejad-Ganji SMR. 2019. Osteoarticular manifestations of human 
brucellosis: A review. World Journal of Orthopedics 18(10): 54-62. 

 
Etxeberria F. 1994. Vertebral epiphysitis: early signs of Brucellar disease. Journal of Paleopathology 
6: 41–49. 

 
Fournié G, Pfeiffer DU, Bendrey R. 2017. Early animal farming and zoonotic disease dynamics: 
modelling brucellosis transmission in Neolithic goat populations. Royal Society Open Science 4(2): 
160943. 

 
Glasgow MMS. 1976. Brucellosis of the spine. British Journal of Surgery 63: 283-288. 

 
Glynn MK, Lynn TV. 2008. Brucellosis. Journal of the American Veterinary Medical Association 233: 
900-908. 

 
Greco E, El-Aguizy O, Ali MF, Foti S, Cunsolo V, Saletti R, Ciliberto E. 2018. Proteomic analyses on an 
ancient Egyptian cheese and biomolecular evidence of Brucellosis. Analytical Chemistry 90: 9673- 
9676. doi: 10.1021/acs.analchem.8b02535. 

 
Hull NC, Schumaker BA. 2018. Comparisons of brucellosis between human and veterinary medicine. 
Infection ecology & epidemiology 8(1): 1500846. 



 

Johnson-Walker YJ, Kaneene JB. 2018. Epidemiology: science as a tool to inform One Health policy. 
In: Herrmann, J.A., Johnson-Walker, Y.J. (Eds.), Beyond One Health: From Recognition to Results. 
Wiley Blackwell; Hoboken, NJ; 3–30. 

 
Jones C. 2019. Brucellosis in an adult female from Fate Bell Rock Shelter, Lower Pecos, Texas (4000– 
1300 BP). International Journal of Paleopathology 24: 252-264. 

 
Kay GL, Sergeant MJ, Giuffra V, Bandiera P, Milanese M, Bramanti B, Bianucci R, Pallen MJ. 2014. 
Recovery of a medieval Brucella melitensis genome using shotgun metagenomics. mBio 5: (4). 
e01337-14. doi:10.1128/mBio.01337-14. 

 
Lebov J, Grieger K, Womack D, Zaccaro D, Whitehead N, Kowalcyk B, MacDonald PDM 2017. A 
framework for One Health research. One Health 3: 44-50. 

 
Lifeso RM, Harder E, McCorkell SJ. 1985. Spinal brucellosis. The Journal of Bone and Joint Surgery 16- 
B(3)L 345-351. 

 
Lignereux Y, Peters J. 1999. Elements for the retrospective diagnosis of tuberculosis on animal bones 
from archaeological sites. In, Tuberculosis Past and Present, G. Pálfi, O. Dutour, J. Deák, I. Hutás 
(eds.), Golden Book Publisher Ltd/Tuberculosis Foundation: Budapest; 339-348. 

 
Lindahl T, Nyberg B. 1972. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11: 
3610-3618. doi:10.1021/bi00769a018. 

Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709-715. 

Madkour MM, Sharif HS, Abed MY, Al-Fayez MA. 1988. Osteoarticular brucellosis: Results of bone 
scintigraphy in 140 patients. American Journal of Radiology 150: 1101-1105. 

 
Magnani DM, Lyons ET, Forde TS, Shekhani MT, Adarichev VA, Splitter GA. 2013. Osteoarticular 
tissue infection and development of skeletal pathology in murine brucellosis. Disease Models & 
Mechanisms 6: 811-818. doi: 10.1242/dmm.011056. 

 
Mays SA. 2007. Lysis at the anterior vertebral body margin: Evidence for Brucellar spondylitis? 
International Journal of Osteoarchaeology 17(2): 107-118. doi: 10.1002/oa.903. 

 
Mays SA, Taylor GM, Legge AJ, Young DB, Turner-Walker G. 2001. A Palaepathological and 
biomolecular study of tuberculosis in a medieval skeletal collection from England. American Journal 
of Physical Anthropology 114: 298-311. 

 
McElroy A. 1990. Biocultural models in studies of human health and adaptation. Medical 
Anthropology Quarterly 4: 243-265. 

 
Mehanic S, Baljic R, Mulabdic V, Huric-Jusufi I, Pinjo F, Topalovic-Cetkovic J, Gadziosmanovic V. 2012. 
Osteoarticular Manifestations of Brucellosis. Medicinski Arhiv 66(3, suppl 1): 24-26. 

 
Merrett DC. 2002. Is pastoralism a pain in the . . . ? Palaeopathology in Early Neolithic Iran. American 
Association of Physical Anthropologists, Annual Meeting, Buffalo, New York. American Journal of 
Physical Anthropology S34: 112-113. 



 

Merrett DC 2004, Bioarchaeology in Early Neolithic Iran: assessment of health status and subsistence 
strategy. Unpublished PhD thesis dissertation; Winnipeg, Canada: University of Manitoba. 

 
Moreno E. 2014. Retrospective and prospective perspectives on zoonotic brucellosis. Frontiers in 
Microbiology 5:213. 

 
Murphy EM, Chistov YK, Hopkins R, Rutland P, Taylor GM 2009. Tuberculosis among Iron Age 
individuals from Tyva, south Siberia: palaeopathological and biomolecular findings. Journal of 
Archaeological Science 36: 2029-2038. 

 
Mutolo MJ, Jenny LL, Buszek AR, Fenton TW, Foran DR. 2011. Osteological and molecular 
identification of Brucellosis in ancient Butrint, Albania. American Journal of Physical Anthropology 
147: 254-263. doi: 10.1002/ajpa.21643. 

 
Ortner DJ. 2003. Identification of Pathological Conditions in Human Skeletal Remains. 2nd Edition. 
Academic Press, New York. 

 
Ouahrani S, Michaux S, Sri Widada J, Bourg G, Tournebize R, Ramuz M, Liautard JP. 1993. 
Identification and sequence analysis of IS6501, an insertion sequence in Brucella spp: relationship 
between genomic structure and the number of IS6501 copies. Journal of General Microbiology 139: 
3265-3273. 

 
Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. 2006. The new global map of human 
brucellosis. The Lancet Infectious Diseases 6: 91-99. 

 
Pisarenko SV, Kovalev DA, Volynkina AS, Ponomarenko DG, Rusanova DV, Zharinova NV, 
Khachaturova AA, Tokareva LE, Khvoynova IG, Kulichenko AN. 2018. Global evolution and 
phylogeography of Brucella melitensis strains. BMC Genomics 19: 353. 
https://doi.org/10.1186/s12864-018-4762-2 

 
Poester FP, Samartino LE, Santos RL. 2013. Pathogenesis and pathobiology of brucellosis in livestock. 
Revue scientifique et technique - Office international des epizooties 32: 105-15. 

 
Priest Jr, Low D, Wang C, Bush T. 2008. Brucellosis and sacroiliitis: A common presentation of an 
uncommon pathogen. Journal of the American Board of Family Medicine 21(2): 158-161. doi: 
10.3122/jabfm.2008.02.070270. 

 
Ramadan RO, Hashim NH, Bukhari AAE. 1991. Carpal hygromas in sheep. World Animal Review 69: 
64-66. 

 
Rashidi JS, Ortner DJ, Frohlich B, Jonsdottir B. 2001. Brucellosis in Early Bronze Age Jordan and 
Bahrain: An analysis of possible cases of Brucella spondylitis. American Journal of Physical 
Anthropology S114: 122-123. 

 
Roberts CA, Buikstra JE. 2019. Ch. 11. Bacterial Infections. In Ortner's Identification of Pathological 
Conditions in Human Skeletal Remains, Third Edition, edited by. Academic Press: London; 321-439. 

 
Schlafer DH, Foster RA. 2016. Female genital system. In: Maxie MG (ed.), Jubb, Kennedy and 
Palmer's Pathology of Domestic Animals. Sixth edition. Volume 3. St. Louis, MO: Elsevier, 358–464. 

 
Sevilla-López S, Quero Valenzuela F, Piedra Fernandez I. 2011. Bilateral pulmonary nodules due to 



 

Brucellosis. Archivos de Bonchoneumonologia 47: (6).320-321. doi: 10.1016/j.arbres.2011.02.003. 
Epub 2011 Apr 5. 

 
Sidstedt M, Jansson L, Nilsson E, Noppa L, Forsman M, Peter Rådström P, Hedman J. 2015. Humic 
substances cause fluorescence inhibition in real-time polymerase chain reaction. Analytical 
Biochemistry 487: 30–37. 

 
Sokolov AS, Nedoluzhko AV, Boulygina ES, Tsygankova SV, Sharko FS, Gruzdeva NM, Shishlov AV, 
Kolpakova AV, Rezepkin AD, Skryabin KG, Prokhortchouk EB. 2016. Six complete mitochondrial 
genomes from Early Bronze Age humans in the North Caucasus.  Journal of Archaeological Science 
73:138–144. 

 
Taylor GM. 2014. Ancient DNA (aDNA) and the Fingerprints of Disease: Retrieving Human Pathogen 
Genomic Sequences from Archaeological Remains Using Real-time Polymerase Chain Reaction (RT- 
PCR). In, Molecular Diagnostics: Current Research and Applications, Huggett JF, O’Grady J (eds.). 
Caister Academic Press. 

 
Taylor GM, Murphy E, Hopkins R, Rutland P, Chistov Y. 2007. First report of Mycobacterium bovis 
DNA in human remains from the Iron Age. Microbiology 153: 1243–1249. 

 
Turan H, Serefhanoglu K, Karadeli E, Togan T, Arslan H. 2011. Osteoarticular Involvement among 202 
brucellosis cases identified in Central Anatolia region of Turkey. Internal Medicine 50: 421-428. doi: 
10.2169/internalmedicine.50.4700. 

 
Waldron T. 2009. Palaeopathology. Cambridge: Cambridge University Press. 

 
Zeder MA. 2008. Animal domestication in the Zagros: an update and directions for future research. 
In, Archaeozoology of the Near East VIII Travaux de la Maison de l'Orient et de la Méditerranée 49, 
Vila E, Gourichon L, Choyke AM, Buitenhuis H (eds.), pp. 243–277. Lyon, France: Maison de l'Orient 
et de la Méditerranée. 



 

Table 1. Selected examples of human skeletal evidence interpreted as brucellosis from different 
contexts. 

 
provenance discussion references 

Sterkfontein, South 
Africa dated to 2.8- 
2.4 MYA 

Australopithecus africanus with possible 
evidence for brucellosis; indicates that 
zoonotic pathogen transfer is possible 
without the context of agriculture. 

D’Anastasio et al., 
2009; D’Anastasio et 
al., 2011 

Early Neolithic Ganj 
Dareh, Iran, 10,000 
CalBP 

Tentative identification; peri-domestication 
context - early herd management and 
intensive exploitation of goats 

Merrett, 2002; 
Merrett 2004 

Bronze Age Bhab- 
Edh-Dhra, Jordan, 
5100-4200 BP 

Spinal changes and possible Pedro-Pons 
sign have been interpreted as evidence of 
brucellosis; full animal domestication 
context; development of transhumant 
pastoralism and secondary products (dairy) 

Ortner, 2003; 
Rashidi et al., 2001 

Herculaneum, Italy, 
dated to the Mt. 
Vesuvius eruption of 
79 AD 

Lesions consistent with brucellosis have 
been observed in 16 of 151 individuals 
recovered. Diagnosis was based on Pedro- 
Pons sign of lumbar vertebrae, radiographic 
evidence of sclerosis below the vertebral 
body lesions and thickening and increased 
density of trabeculae. Results are 
consistent with historic records of the 
importance of milk and milk products in 
Roman society and the potential for 
endemic zoonoses in the past. 

Capasso, 1999 

Fate Bell Rock 
Shelter, Texas, 
dating 4,000-1300 
BP 

Based on bone macroscopic morphology 
and CT imaging; hunting/gathering context 
again indicates that zoonotic pathogen 
transfer is possible without the context of 
agriculture 

Jones, 2019 

Medieval Butrint, 
Albania, 10th to 13th 

centuries AD 

Both osteological and molecular methods 
were applied to skeletal remains with 
macroscopic possible brucellar lesions (see 
Table 4). In this case the diagnosis is 
definitive; Brucella spp. aDNA was 
recovered from the lesions. 

Mutolo et al., 2012 



 

Table 2. Routes of infection of Brucella spp. that result in skeletal lesions in domestic animals 
 
 Osteological response Reference 

Bacteraemia with 
haematogenous 
seeding of bone 

Direct localisation in vertebra triggering 
inflammation and bone 
modelling/periosteal new bone formation 

Schlafer and Foster, 2016 

Bacteraemia with 
haematogenous 
seeding of articular 
joints, bursae and 
tendon sheaths 

Inflammation at these sites extends locally 
to impact adjacent bone causing periosteal 
new bone formation at specific anatomical 
sites, e.g. inflammation of supra-atlantal 
bursa (poll evil) causing osseous lesions on 
adjacent occipital bone of equine cranium 

Craig et al., 2016; Denny, 
1973 



 

Table 3. Published zooarchaeological remains for which brucellosis is considered in the differential 
diagnosis or as a possible cause. 

 
Provenance Species / 

element 
Brief description and diagnosis Reference 

Early Iron Age 
Arzhan 1, Tyva 

Horse 
skull 

Occipital bone lesions interpreted as foci of 
inflammation and necrosis following local 
infection. It is suggested that the pathology 
represents a case of ‘poll-evil’, most likely due to a 
bacterial infection such as Brucella abortus, 
Actinomyces bovis, or Streptococcus 
zooepidemicus 

Bendrey et al., 
2011 

Late Iron 
Age/Early 
Roman, Viables 
Farm, UK 

Horse 
skeleton 

Proliferative periosteal lesions on the atlas, two 
thoracic vertebrae (one with lytic damage), the 
sacrum, four rib fragments, and right pelvis 
suggestive of systemic infection, most likely due 
to Trueperella pyogenes, Mycobacterium bovis, 
Brucella abortus or Aspergillus spp. 

Bendrey et al., 
2008 

Late Iron 
Age/Early 
Roman, 
Downlands 
Farm, UK 

Horse 
skeleton 

Proliferative periosteal lesions on six thoracic and 
one lumbar vertebrae, and eight rib fragments 
suggestive of systemic infection, most likely due 
to Trueperella pyogenes, Mycobacterium bovis, 
Brucella abortus or Aspergillus spp. 

Bendrey et al., 
2008 

Dragonby, UK Horse 
mid- 
cervical 
vertebra 

‘lesion closely resembling modern brucella 
osteomyelitis’. No further detail. 

Baker and 
Brothwell, 
1980, 76 



 

Table 4. Archaeological human remains with confirmed biomolecular evidence for Brucella species 
 

Provenance Age and sex pathology reference 
Bronze Age 
Novosvobodnaya 
(Republic of Adygea, 
Russia); Kurgan (burial 
mound) 25 grave 1 

Not 
described 

Not described Sokolov et al., 
2016 

Iron Age Aymyrlyg, 
Tyva, south Siberia 

25-35 year 
old female 
(SkXXXI.34) 

Lytic lesions in eight vertebrae (C7, T6- 
9, L3-L5) 

Murphy et al., 
2009; Taylor 
et al., 2007 

medieval Butrint, in 
Southwest Albania, 
burial 2272 (10-12th 

centuries AD) 

young male 
individual 
aged 
between 17- 
21 years old 

Skeletal lesions included, amongst 
others, cavitating lytic foci in the 
thoracic vertebrae (T3-T12) and lumbar 
vertebrae (L1, L2 and L4), sacrum was 
affected, as were some ribs, which 
showed cortical thickening and 
trabecular expansion with porosity on 
the parietal surface of some fragments 

Mutolo et al., 
2011 

medieval Butrint, in 
Southwest Albania, 
burial 4015 (12th-13th 

centuries AD) 

young male 
individual 
aged 
between 17- 
21 years old 

Skeletal lesions included, amongst 
others, cavitating lytic lesions in 
vertebrae (T3–T12, L1, L2), sacrum was 
affected, as were some ribs, which 
showed some cortical and porosity on 
the parietal surfaces. 

Mutolo et al., 
2011 

Medieval Geridu, 
northwestern 
Sardinia; second half 
of the 14th century 

50-60 year 
old male 
individual 
(Sk2568) 

Diffuse idiopathic skeletal hyperostosis 
(DISH) – fusions between thoracic 
vertebrae (T4-T10), and L5 and sacrum; 
also extraspinal enthesopathies. Thirty- 
two calcified nodules found in the pelvic 
girdle. 

Kay et al., 
2014 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Understanding and tackling zoonoses: (A) the ‘epidemiological triad’ summarising factors 
influencing infectious disease (characteristics after Johnson-Walker and Kaneene 2018); (B) the 
integrative biocultural model (after McElroy 1990); (C) conceptualisation of One Health interventions; 
(D) key recoverable datasets for One Health investigations of past zoonoses. 


