RVC OPEN ACCESS REPOSITORY – COPYRIGHT NOTICE

This is the peer-reviewed, manuscript version of the following article:

Witte, S., Dedman, C., Harriss, F., Kelly, G., Chang, Y. M. and Witte, T. H. 'Comparison of treatment outcomes for superficial digital flexor tendonitis in national hunt racehorses', *The Veterinary Journal.*

The final version is available online via <u>http://dx.doi.org/10.1016/j.tvjl.2016.08.003</u>.

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

The full details of the published version of the article are as follows:

TITLE: Comparison of treatment outcomes for superficial digital flexor tendonitis in national hunt racehorses

AUTHORS: S. Witte; C. Dedman; F. Harriss; G. Kelly; Y-M. Chang; T.H. Witte

JOURNAL TITLE: The Veterinary Journal

PUBLISHER: Elsevier

PUBLICATION DATE: 15 August 2016 (online)

DOI: 10.1016/j.tvjl.2016.08.003

CCEPTED

1 **Original Article** 2

3 Comparison of treatment outcomes for superficial digital flexor tendonitis in National 4 Hunt racehorses

- 5 S. Witte ^a, C. Dedman ^b, F. Harriss ^c, G. Kelly ^c, Y-M. Chang ^d, T.H. Witte ^{b,*} 6
- 7

^a ISME, Bern, Switzerland; Current address: Tierklinik Schönbühl, Oberdorf Strasse 8

- 9 1, Schönbühl, 3322, Switzerland
- ^b Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, 10
- Hertfordshire, United Kingdom 11
- ^c Fethard Equine Hospital, Fethard, Kilnockin, Tipperary, Republic of Ireland 12
- 13 ^d Research Support Office, Royal Veterinary College, Hawkshead Lane, Hatfield,
- Hertfordshire, United Kingdom 14
- 15
- 16
- * Corresponding author. Tel.: +44 1707 666297. 17
- Accepted Manuf E-mail address: twitte@rvc.ac.uk (T.H. Witte). 18

19 Highlights

20	٠	We collected race performance data for National Hunt racehorses treated for superficial
21		digital flexor tendonitis.
22	٠	We compared racing performance for 5 common treatment modalities in treated and age- and
23		sex-matched control horses.
24	٠	Our data demonstrate that SDF tendonitis remains a career limiting injury.
25	٠	Control horses raced more often, with higher performance rating and a longer racing distance,
26		after the date of case injury.
27	•	Rate of return to racing was not associated with lesion severity or treatment group.

28

29 Abstract

30 Superficial digital flexor (SDF) tendonitis is a common injury in Thoroughbred racehorses. Injuries require prolonged rehabilitation, with unpredictable outcomes and a high 31 incidence of re-injury. This observational case-control study aimed to compare race outcomes 32 33 after commonly advocated treatments for tendon healing. Clinical and racing records were evaluated for 127 National Hunt racehorses treated between 2007 and 2011 for an SDF 34 35 tendon injury. Two age- and sex-matched control horses were selected for each case horse to analyse the effect on post-injury racing outcomes of pre-injury data, lesion severity and 36 treatment group (controlled exercise alone, bar firing, intralesional platelet-rich plasma 37 (PRP), tendon splitting, tendon splitting combined with bar firing). 38

39

Control horses raced more often than case horses, with higher maximum racing post 40 41 rating (RPR_{max}) and longer racing distances. Pre-injury racing performance was not 42 associated with treatment group. Rate of return to racing was not associated with lesion severity or treatment group. Number of races, total distance raced post-injury and RPR_{max} 43 were not associated with lesion severity or treatment group. Controlled exercise alone offered 44 similar post-injury racing outcomes in National Hunt racehorses with SDF tendonitis to the 45 other treatment options examined. Bar firing, either alone or in conjunction with tendon 46 splitting, provided no additional benefit in rate of return to racing and race performance. 47

48

49 Keywords: Controlled exercise; Firing; PRP; Splitting

50

Accepted Manuscrip

51 Introduction

Superficial digital flexor (SDF) tendonitis is the most common cause of lameness in
National Hunt racehorses, with prevalences as high as 24% (Lam et al., 2007; Avella et al.,
2009; Dyson et al., 2011), or 1.71 per 100 horse months in training (Ely et al., 2009). SDF
injuries require prolonged rehabilitation, with unpredictable outcomes and high incidences of
re-injury (Marr et al., 1993; O'Meara et al., 2010). SDF tendonitis is often career ending
(Marr et al., 1993; Lam et al., 2007; Dyson et al., 2011).

58

Immediate treatment of SDF tendonitis targets a reduction in inflammation (Ross et 59 al., 2011; Avella and Smith, 2012), and thereafter various interventions are advocated to 60 improve tendon healing. Tendon firing and blistering were believed to promote repair but 61 62 positive clinical evidence is lacking and these treatments are widely considered unethical¹ (Silver et al., 1983; Marr and Bowen, 2012). Tendon splitting to release the pressure of 63 haemorrhage and promote vascularisation in the injured area has yielded mixed results 64 (Stromberg.B et al., 1974; Henninger et al., 1990; Ross et al., 2011). Desmotomy of the 65 accessory ligament of the superficial digital flexor tendon produced favourable rates of return 66 to racing and number of races completed but resulted in increased suspensory ligament strain 67 experimentally and higher incidence of suspensory ligament desmitis clinically (Bramlage, 68 1986; Bramlage, 2012). Intralesional β -aminopropionitrile fumerate, polysulphated 69 70 glycosaminoglycans and sodium hyaluronate (Dowling et al., 2000) have been superceded by 71 regenerative therapies. Isolated exogenous growth factors such as insulin-like growth factor 1 72 and transforming growth factor- β can be administered intra-lesionally (Dowling et al., 2000; 73 Witte et al., 2011), however more recently mixed endogenous cytokines have been delivered

¹ See: Firing of Horses: RCVS position unchanged on this unethical procedure, In: RCVS News. <u>https://www.rcvs.org.uk/publications/rcvs-news-november-2011/</u> (Accessed 8 August 2016)

74	in the form of platelet rich plasma (PRP, Schnabel et al., 2007; Arguelles et al., 2008; Bosch
75	et al., 2010; McIlwraith, 2012) or stem cells (Smith et al., 2003; Smith and Webbon, 2005).
76	Intra-lesional mesenchymal stem cell therapy yielded reduced re-injury rates in National
77	Hunt racehorses (Godwin et al., 2012) and foetal-derived embryonic- and induced pluripotent
78	stem cells show similar promise (Watts et al., 2011; McIlwraith, 2012; Smith et al., 2014).
79	
80	In spite of the evolution of tendon therapies, controlled exercise remains fundamental
81	to the rehabilitation of SDF injuries. A standard 48-week rehabilitation program, with
82	progress monitored ultrasonographically at 3-month intervals has been advocated (Avella and
83	Smith, 2012; Smith and McIlwraith, 2012).
84	
85	Measures to quantify racehorse performance include race starts (Parente et al., 2008),
86	races placed (Weller et al., 2006), race earnings (Cheetham et al., 2008; Parente et al., 2008),
87	2 years post-injury racing rate (Dyson, 2004; Smith and McIlwraith, 2012), rate of
88	completion of greater than one race (Parente et al., 2008; Smith and McIlwraith, 2012),
89	racing post rating (RPR; Weller et al., 2006; O'Meara et al., 2010), official rating (Weller et
90	al., 2006), and top speed rating (Weller et al., 2006). Combinations of these parameters have
91	been used to calculate performance indices (Woodie et al., 2005; Reardon et al., 2012).
92	Completion of five post-injury races is considered an adequate measure of success (O'Meara
93	et al., 2010; Smith and McIlwraith, 2012).
94	
95	Racing outcomes have been evaluated for individual treatments, but never across
96	multiple treatments within a population of horses from the same breed engaged in the same
97	athletic pursuit. Randomised, masked controlled trials represent the best form of evidence for
98	clinical decision-making, but are lacking for tendon treatments. Observational studies or

99 single treatment prospective studies therefore currently represent the best available evidence. 100 This observational case-control study compared racing outcomes in a population of National 101 Hunt racehorses in the Republic of Ireland. Outcomes were compared between injured horses 102 and control horses, and between treatments, for a range of contemporary and more traditional 103 therapies including thermocautery, which is still widely practised in spite of the ethical 104 considerations. We hypothesised that lesion severity would be correlated with racing 105 performance post-injury; that horses treated with PRP would more frequently return to 106 racing, and at a higher standard than horses treated by bar firing, controlled exercise, tendon 107 splitting or bar firing combined with tendon splitting; and that bar firing alone or in 108 conjunction with tendon splitting would provide no additional benefit for racing performance 109 post-injury.

110

111 Materials and methods

112 Horses

All National Hunt racehorses that had competed over jumps under rules and were presented to a single clinic between June 2007 and July 2011 for evaluation of an SDF tendon injury were identified (Fig. 1). Two age- and sex-matched horses were selected using a random number generator from the starters of the last race prior to presentation for each injured horse, to act as controls. Where identical matches were not available, the closest matches were selected. If the treated horse had not yet raced, control horses were selected from the first race after treatment.

120

Age, sex, horse origin (ex-store, ex-flat or point-to-point), lesion severity and
treatment were taken from hospital records. Lesions were defined ultrasonographically as

123	mild, moderate or severe (<10%, 10-40% or >40% of tendon cross-sectional area affected at
124	the zone of maximum injury; Smith and McIlwraith, 2012).
125	
126	In the acute stage, when heat, pain or swelling were evident (Smith and McIlwraith,
127	2012), horses were box-rested and treated with non-steroidal anti-inflammatory drugs, ice
128	and bandaging. Horses were re-evaluated during the sub-acute phase (2-3 weeks post-injury),
129	treated as described below and/or issued a standard rehabilitation regimen. Treatment
130	decisions were made after discussion with the trainer, rather than through random allocation.
131	
132	Controlled exercise
133	A 48-week controlled exercise program was recommended, with increasing exercise
134	intensity starting with walking only, then trotting and finally canter and fast work (Table 1).
135	
136	Bar firing
137	This was undertaken under sedation with detomidine (0.01 mg/kg IV) and
138	butorphanol (0.01 mg/kg IV). Procaine penicillin (22000 IU/kg IM), gentamycin (6.6 mg/kg
139	IV) and phenylbutazone (4.4 mg/kg IV) were administered pre-operatively. High 4-point
140	regional anaesthesia and proximal cannon-bone ring block were performed on the affected
141	leg. Horizontal lines were scored at an interval of approximately 2 cm in the skin overlying
142	the palmar metacarpus. The glowing wire was placed against the skin, scalding the skin
143	superficially but taking care not to cause a full thickness skin defect. A bandage was applied
144	and changed every 48 h for 2 weeks. Horses received phenylbutazone (2.2 mg/kg PO twice
145	daily for 7 days). The standard 48-week exercise program was recommended (Table 1).
146	
147	Injection of platelet rich plasma

148	PRP was injected 2-3 weeks after injury. PRP was harvested using an Osteokine PRP
149	device (Dechra) and activated with calcium chloride prior to injection. Twenty-two to 25
150	gauge needles were placed throughout the length of the lesion under ultrasound guidance.
151	PRP was injected starting distally and proceeding proximally with final injection volume
152	determined by lesion size. A bandage was applied and changed every 48 h for 2 weeks.
153	Horses received phenylbutazone (4.4 mg/kg PO twice daily for 5 days) and procaine
154	penicillin (22000 IU/kg IM twice daily for 4 days), were box rested for 2 weeks and then the
155	standard 48-week exercise program was recommended (Table 1).
156	
157	Tendon splitting
158	Horses underwent tendon splitting 3-4 weeks after injury. This was undertaken under
159	sedation with detomidine (0.01 mg/kg IV) and butorphanol (0.01 mg/kg IV). Procaine
160	penicillin (22000 IU/kg IM), gentamycin (6.6 mg/kg IV) and phenylbutazone (4.4 mg/kg IV)
161	were administered pre-operatively. High 4-point regional anaesthesia and proximal cannon-
162	bone ring block were performed on the affected leg. Under ultrasound guidance a No. 11
163	scalpel blade was introduced in a longitudinal plain into the core lesion. Repeat incisions
164	were made over the length of the lesion. A bandage was applied and changed every 48 h for 2
165	weeks. Horses received phenylbutazone (2.2 mg /kg PO twice daily for 7 days), were box
166	rested for 2 weeks and then the standard 48-week exercise program was recommended (Table
167	1).
168	
169	Tendon splitting then bar firing
170	Horses underwent tendon splitting 3-4 weeks after injury using the technique
171	described above. They subsequently underwent bar firing as described above. The interval

between splitting and firing was not available for analysis.

173

174 Retired

Horses were retired without further treatment for various reasons including lesion
severity, financial concerns, concomitant injuries and trainer preference.

177

178 Racing data collection

The following racing data were obtained from the Racing Post²: total number of pre-179 and post-injury races, binary variables of completion of one, three and five races; pre- and 180 post-injury total distance raced in furlongs; pre- and post-injury maximum RPR (RPR_{max}). 181 RPR is a handicap rating determined by a horse's performance in a given race taking into 182 account weight carried, race class and outcome. Precisely how this rating is calculated is 183 184 commercially confidential. Interval (days) to the first race post-injury was compared between injured and control horses and between treatments, as were minimum, median and maximum 185 intervals between all races post-injury. 186

187

188 Data analysis

Data were analysed using R 3.2.4 (R-Project³). Percentage and median (minimum and maximum) were used to summarise categorical and continuous variables. All continuous racing measurements were log transformed prior to inferential data analysis except for preand post-injury maximum RPR. Horses that were retired were excluded for analysis of postinjury racing performance, along with their matched controls. Conditional logistic regression that accounted for the age-sex matching stratum was used to assess whether horse origin and pre-injury racing measurements were predictors of injured/control status. Linear models that

² See: The Racing Post: <u>http://www.racingpost.com/ (</u>Accessed 8 August 2016)

³ See: The Comprehensive R Archive Network: <u>http://cran.r-project.org/</u> (Accessed 8 August 2016)

196 adjusted for age and sex of the horses were used to assess the effect of SDF/control status on continuous post-injury racing performance. Binary logistic regression that adjusted for age 197 198 and sex was used to assess the effect of injured/control status on dichotomised post-injury 199 race measurements. Odds ratios (OR) and 95% confidence intervals (CI) from conditional logistic regression and binary logistic regression models are presented. For injured horses, 200 Fisher's exact tests were used to assess association between categorical variables. One-way 201 202 ANOVA was used to compare continuous variables between treatment groups or severity 203 groups. Type I error rate was set at 5%.

204

205 Results

206 Horses

207 Three hundred and eighty-one horses were included in the study, 127 with SDF 208 tendonitis and 254 control horses. Ex-flat racehorses made up 19% (n = 71) of the population, 209 75% (n = 287) were ex-store horses and the remaining 6% (n = 21) were point-to-point 210 horses (Table 2). The likelihood of injured horses being ex-flat was significantly lower than 211 their being ex-store (OR [95% CI]: 0.398 [0.181, 0.877]; P = 0.022), but there was no difference between point-to-point and ex-store groups (1.378 [0.516, 3.682]; P = 0.523; Table 212 2) and only a marginal difference between point-to-point and ex-flat groups (3.463 [0.990, 213 12.112]; *P*=0.052). 214

215

Geldings represented 82% (n = 104) of the injured horses. The remainder were mares, and sex was not correlated with horse origin (P = 0.363). Injured horses ranged in age from 3-11 years (median = 6), and age was not correlated with horse origin (P = 0.799).

219

- The number of races prior to the injury date was not correlated with injured or control status (P = 0.094; Table 2). Median pre-injury total race distance and median pre-injury RPR_{max} were not correlated with injured or control status (Table 2).
- 223

Nine horses were retired from racing. Post-injury racing performance was analysed 224 for the remaining 118 horses. Overall, compared to control horses, injured horses had fewer 225 226 races, a shorter total distance and lower RPR_{max} (Table 2) post-injury. The odds of racing once (OR 0.04 [0.01, 0.15]; P < 0.001), three (0.25 [0.15, 0.41]; P < 0.001) or five (0.29 227 [0.18, 0.46]; P < 0.001) times post-injury were also lower. Interval to first post-injury race 228 was longer for injured horses than control horses (P < 0.001; Table 2). Median and minimum 229 intervals between post-injury races did not differ significantly between injured horses and 230 231 control horses (P = 0.246, 0.108, respectively; Table 2), but maximum interval was significantly shorter in injured horses (P < 0.001; Table 2). The timing of the largest interval 232 between races was interval 1 in injured horses and interval 4 in control horses (P < 0.001). 233 234

235 Lesion severity

Seventeen horses (13.4%) had mild lesions, 78 (61.4%) had moderate lesions and 32 (25.2%) had severe lesions. Lesion severity was not associated with horse origin (P = 0.496), sex (P = 0.530) or age (P = 0.912), nor did it have a significant correlation with pre-injury number of races (P = 0.338), pre-injury total race distance (P = 0.281) or median pre-injury RPR_{max} (P = 0.972; Table 6).

241

242 Treatment and racing performance

Treatment group was not associated with horse origin (P = 0.158; Table 3), age (P = 0.298) or sex (P = 0.152), but was significantly associated with lesion severity (P < 0.001;

245 Table 3). Treatment group was not associated with pre-injury total race distance (P = 0.634), number of pre-injury races (P = 0.384), or with pre-injury RPR_{max} (P = 0.107; Table 4). Post-246 247 injury number of races and total race distance did not differ with lesion severity (P = 0.593) 248 and P = 0.811, respectively; Table 6) or by treatment group (P = 0.480 and P = 0.480, respectively; Table 4). Post-injury RPR_{max} did not differ with lesion severity (P = 0.635; 249 250 Table 6). Overall post-injury rate of return to racing did not differ significantly by lesion 251 severity (P = 0.650; Table 7) or treatment group (P = 0.579; Table 5). Odds of racing three times post-injury did not differ with lesion severity (P = 0.684, Table 7) or treatment group 252 (P = 0.068; Table 5). Odds of racing five times post-injury did not differ with lesion severity 253 (P = 0.765; Table 7) or treatment group (P = 0.730; Table 5). 254 255

Interval to first post-injury race did not differ with lesion severity (P = 0.918; Table 6) or treatment group (P = 0.219; Table 4). In injured horses, median, minimum and maximum intervals between post-injury races did not differ by treatment group (P = 0.560, 0.685, 0.776, respectively; Table 4) or by lesion severity (P = 0.925, 0.815, 0.834, respectively; Table 6). The timing of the largest interval between races in injured horses did not differ significantly by treatment group (P = 0.822; Table 4) or by lesion severity (P = 0.288; Table 6).

263

264 Discussion

Relevance and homogeneity of the study population was confirmed by the absence of statistically significant differences in demographics and pre-injury racing performance between injured horses and the randomly selected, matched control horses. Subclinical tendon changes with exercise and age have been identified as predisposing factors in tendonitis (Wilmink et al., 1992; Dowling et al., 2000; Smith et al., 2002; Pinchbeck et al.,

2004), but while we were not able to quantify pre-injury training load or intensity, we failed
to demonstrate differences in pre-injury racing history when comparing injured horses with
control horses.

273

Our data demonstrate that SDF tendonitis remains a career limiting injury (Ross et al., 2011). Injured horses had shorter careers after injury, achieved a lower career RPR_{max} and completed a shorter total career distance compared to control horses. After the first race postrehabilitation, intervals between post-injury races were similar between injured horses and control horses, indicating that injured horses could race as frequently as their uninjured counterparts.

280

281 We hypothesised that lesion severity would be correlated with racing performance post-injury. Our data confirm that horses with severe lesions had the highest rate of 282 retirement (Table 3; Marr et al., 1993). For treated horses, there was no difference in the rate 283 284 of return to racing or the number of races post-injury across lesion severity, contrasting with previous work showing a detrimental effect of lesion severity on return to work (Marr et al., 285 1993). Injury severity also showed no significant association with post-injury RPR_{max}. 286 Although increasing lesion severity increases the rate of retirement, it need not negatively 287 affect the post-injury racing performance of treated horses. 288

289

Cost and pre-injury racing standard are likely to influence treatment selection.
However, when comparing pre-injury racing standard across treatment groups, we found no
evidence that horses racing at a higher standard were overrepresented in any treatment group,
such as more expensive intralesional PRP.

294

295 We assessed career longevity by completion of three and five races post-injury as well 296 as total number of races. Controlled exercise alone proved superior and bar firing inferior for 297 the proportion of horses racing three times. Treatment group did not have an effect on the 298 proportion of horses racing five times, reflecting the significantly shorter careers of injured 299 horses compared to control horses overall, regardless of treatment. Previous studies have 300 established re-injury rates ranging from 16 to 53% (Marr et al., 1993; Dyson, 2004; O'Meara 301 et al., 2010). In the absence of verbal follow-up, we evaluated time to return to racing and the intervals between post-injury races as quantitative proxies for re-injury. The absence of 302 differences across lesion severity and treatment group suggests that the rate of re-injury prior 303 to a return to racing and further career intervals due to re-injury were similar across groups 304 305 and lesion severities.

306

307 We hypothesised that horses treated with intralesional PRP would more frequently 308 return to racing, and at a higher standard than horses treated by other means. PRP did not 309 prove superior to other treatments. Although it has been a popular treatment for tendonitis, 310 the evidence for the use of PRP is weak. Experimental studies have reported stronger tissue in treated tendons compared to control horses (Bosch et al., 2010; McIlwraith, 2012) and the 311 312 only case-control study describes the treatment of mid-body suspensory desmitis in nine Standardbred horses which all returned to racing following a single intralesional PRP 313 314 injection (Waselau et al., 2008). While our study does not provide further clinical support for these results, postulated reasons for differences in outcome include sub-optimal platelet 315 316 concentration, increased leukocyte concentration, or differences in PRP activation during 317 administration. Platelet concentration correlates with growth factor concentration and tendon 318 matrix gene expression and elevated leukocyte numbers can increase catabolic gene 319 expression and reduce tendon matrix gene expression (McCarrel and Fortier, 2009; Fortier,

320	2011; Sundman et al., 2011). Platelet concentrations achieved with the system used in our
321	study are comparable to those described in the literature (Sundman et al., 2011; Smith et al.,
322	2014). The method of PRP activation can influence platelet derived growth factor
323	concentration (Textor and Tablin, 2012), but calcium chloride activation as used in our study
324	has been reported to be optimal.
325	
326	The proportion of horses racing at least three times post-injury was highest for those
327	treated with a controlled exercise rehabilitation program alone, supporting previous work
328	showing that 71% of horses with SDF tendonitis returned to racing after a controlled exercise
329	regimen, compared to only 25% of those that were put out to pasture (Gillis, 1997). Full
330	compliance with rehabilitation programs can be challenging, and difficult to monitor, but
331	regular ultrasound assessment allows horse-specific rehabilitation, reducing the recurrence of
332	tendonitis (Gillis, 1997; Smith and McIlwraith, 2012).
333	
334	Although recently out of favour, tendon splitting showed similar results to controlled
335	exercise in this study. Initially thought to promote vascularisation in chronic tendonitis cases,
336	later studies found that splitting induced excessive granulation tissue and slowed scar tissue
337	formation (Asheim, 1967; Stromberg.B et al., 1974; Ross et al., 2011). Tendon splitting is
338	reported to be most effective during the acute to sub-acute stage (2-3 weeks post-injury) of
339	injury, as in this study (Dabareiner, 2000; Ross et al., 2011; Avella and Smith, 2012; Smith et
340	al., 2014).
341	
342	We hypothesised that bar firing alone or in conjunction with tendon splitting would
343	provide no additional benefit for racing performance post-injury. Supporting a long-held
344	hypothesis, bar firing did not yield any improvement in outcome. A lack of improvement in

tendon histology following line firing led to the conclusion that line firing should not be
considered a desirable or effective treatment of acute or chronic equine tendon injury (Silver
et al., 1983). Few studies have assessed the clinical value and efficacy of firing, and even
though this approach has lost support on ethical grounds, it remains commonplace. This study
found no evidence to suggest that the procedure of firing offers a therapeutic advantage
relative to other treatments ⁴.

351

Post-hoc power calculations indicated that more than 160 injured horses were required in each group to detect a statistical difference in completion of five races between controlled exercise (50%) and bar firing (34.2%). Furthermore, more than 2,400 injured horses were required to demonstrate equivalence with an acceptable difference of less than 10% between controlled exercise and bar firing assuming 80% power and 5% type I error rate.

358

The realities of clinical practice and the retrospective nature of our study meant that 359 the choice of treatment for injured horses was not randomly allocated. Injured horses vary in 360 a number of ways that may affect outcome. Although we have demonstrated where injured 361 horses, control horses and treatment groups were similar or different across quantifiable 362 factors such as age, sex, lesion severity and pre-injury performance, it is possible that 363 364 treatment choice was related to unquantifiable human decisions based on clinical information 365 that could have been related to the outcome. As a result of this potential source of bias, differences or similarities between treatment groups could be due to factors related to the 366 367 reason that a treatment was chosen, rather than due to treatment effects. It is impossible to

⁴ See: British Equine Veterinary Association position statement on thermocautery – firing of tendons <u>https://www.beva.org.uk/Portals/0/Documents/Working For Change/Thermocautery</u> 2014 approved.pdf (Accessed 8th August 2016)

368	compensate for these inexplicit factors in an observational study. The large sample size
369	required in a controlled trial to demonstrate equivalence would be unlikely to be achieved
370	given the incidence rate of SDF tendonitis and the number of horses participating in National
371	Hunt racing in the Republic of Ireland annually. In addition, a truly randomised prospective
372	study would be difficult to undertake for SDF tendonitis, given the realities of the racing
373	industry and clinical practice.
374	
375	Conclusions
376	Controlled exercise alone offered similar post-injury racing outcomes for National
377	Hunt racehorses with SDF tendonitis to the other treatment options examined. Bar firing
378	provided no additional benefit. PRP was not superior to other treatments in the studied
379	population.
380	
381	Conflict of interest statement
382	None of the authors has any financial or personal relationships that could
383	inappropriately influence or bias the content of the paper.
384	
385	Acknowledgements
386	Preliminary results were presented as an Abstract at the 13 th World Equine Veterinary
387	Association (WEVA) Congress, Budapest, 3 rd -5 th October 2013. The authors would like to
388	thank Professor Stuart Reid for advice on statistical analysis.
389	
390	References
391 392 393 394	Arguelles, D., Carmona, J.U., Climent, F., Munoz, E., Prades, M., 2008. Autologous platelet concentrates as a treatment for musculoskeletal lesions in five horses. Veterinary Record 162, 208-211.

395 396	Asheim, A., Knudsen, O., 1967. Percutaneous Tendon Splitting. Proceedings of the 13th Annual Convention of the American Association of Equine Practitioners, December
397 398	1967, New Orleans, USA, pp. 225-258.
399	Avella, C.S., Ely, E.R., Verheyen, K.L., Price, J.S., Wood, J.L., Smith, R.K., 2009.
400	Ultrasonographic assessment of the superficial digital flexor tendons of National Hunt
401	racehorses in training over two racing seasons. Equine Veterinary Journal 41, 449-
402	454.
403	
404 405	Avella, C.S., Smith, R.K.W., 2012. Diagnosis and management of tendon and ligament disorders. In: Equine Surgery, 4th Edn. W.B. Saunders, Saint Louis, pp. 1157-1179.
406	
407	Bosch, G., van Schie, H.T., de Groot, M.W., Cadby, J.A., van de Lest, C.H., Barneveld, A.,
408 409	van Weeren, P.R., 2010. Effects of platelet-rich plasma on the quality of repair of mechanically induced core lesions in equine superficial digital flexor tendons: A
410	placebo-controlled experimental study. Journal of Orthopaedic Research 28, 211-217.
411	
412	Bramlage, L.R., 1986. Superior check desmotomy as a treatment for superficial digital flexor
413	tendonitis: initial report. Proceedings of the 32 nd Annual Convention of the American
414	Association of Equine Practitioners, 29 November – 3 December 1986, Nashville,
415	Tennessee, pp. 365-369.
416	
417	Bramlage, L.R., 2012. Experience with surgical treatment of superficial digital flexor
418	tendonitis, In: Havermeyer Meeting 2012: New Advances in the Understanding of
419	Tendonopathies 2, Colorado, pp. 39-44.
420	
421	Cheetham, J., Pigott, J.H., Thorson, L.M., Mohammed, H.O., Ducharme, N.G., 2008. Racing
422	performance following the laryngeal tie-forward procedure: a case-controlled study.
423	Equine Veterinary Journal 40, 501-507.
424	
425	Dabareiner, R.C., MS; Chaffin, MS, 2000. How to perform ultrasound-guided tendon
426	splitting and intralesional tendon injections in the standing horse. Proceedings of the
427	46 th Annual Convention of the American Association of Equine Practioners, 26-29
428	November, San Antonio, Texas, USA, pp. 176-179.
429	Dending DA Det AL Hadress DD Greith DK 2000 Generational distal flores
430	Dowling, B.A., Dart, A.J., Hodgson, D.R., Smith, R.K., 2000. Superficial digital flexor
431	tendonitis in the horse. Equine Veterinary Journal 32, 369-378.
432	Duran S. L. 2004 Medical monocoment of superficial disital flavor tandonities a comparative
433	Dyson, S.J., 2004. Medical management of superficial digital flexor tendonitis: a comparative
434 425	study in 219 horses (1992-2000). Equine Veterinary Journal 36, 415-419.
435	Dyson S.J., Van Pelt, R.J., Keane, K.P., Wood, J., Stirk, A. 2011. National Hunt racehorse,
436 437	point to point horse, and timber racing horse, In: Ross, M.W., Dyson, S.J. (Eds.)
437 438	Diagnosis and Management of Lameness in the Horse, 2 nd Edn. W.B. Saunders, Saint
430 439	Louis, USA, pp. 1062-1075.
439 440	Louis, OSA, pp. 1002-1075.
440 441	Ely, E.R., Avella, C.S., Price, J.S., Smith, R.K., Wood, J.L., Verheyen, K.L., 2009.
442	Descriptive epidemiology of fracture, tendon and suspensory ligament injuries in
443	National Hunt racehorses in training. Equine Veterinary Journal 41, 372-378.
444	The four function of the four four four four four four four four
-	

445 446 447	Fortier, L. 2011. Clinical use of stem cells, marrow components, and other growth factors, In: Ross, M.W., Dyson, S.J. (Eds.) Diagnosis and Management of Lameness in the Horse, 2 nd Edn. W.B. Saunders, Saint Louis, USA, pp. 761-764.
448 449 450	Gillis, C., 1997. Rehabilitation of tendon and ligament injuries. Proceedings of the 43 rd Annual Convention of the American Association of Equine Practitioners, 7-10 December 1997, Phoenix, Arizona, pp. 306-309.
451	
452 453	Godwin, E.E., Young, N.J., Dudhia, J., Beamish, I.C., Smith, R.K., 2012. Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in
454	horses with overstrain injury of the superficial digital flexor tendon. Equine
455	Veterinary Journal 44, 25-32.
456	
457 458 459 460	 Henninger, R., Bramlage, L., Schneider, R., 1990. Short-term effects of superior check ligament desmotomy and percutaneous tendon splitting as a treatment for acute tendinitis. Proceedings of the 36th Annual Convention of the American Association of Equine Practitioners, 1990, Lexington, Kentucky, pp. 539-540.
461	
462	Lam, K.H., Parkin, T.D., Riggs, C.M., Morgan, K.L., 2007. Descriptive analysis of
463	retirement of Thoroughbred racehorses due to tendon injuries at the Hong Kong
464 465	Jockey Club (1992-2004). Equine Veterinary Journal 39, 143-148.
465 466	Marr, C.M., Bowen, I.M., 2012. Does firing have a valid place in the treatment of superficial
467	digital flexor tendon injury in the 21st century? Equine Veterinary Vournal 44, 509-
468	510.
469	
470	Marr, C.M., Love, S., Boyd, J.S., McKellar, Q., 1993. Factors affecting the clinical outcome
471 472 473	of injuries to the superficial digital flexor tendon in National Hunt and point-to-point racehorses. Veterinary Record 132, 476-479.
474	McCarrel, T., Fortier, L., 2009. Temporal growth factor release from platelet-rich plasma,
475 476	trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. Journal of Orthopaedic Research 27, 1033-1042.
477	
478	McIlwraith, C.W., 2012. Current status of newer biologic therapies, In: Havermeyer Meeting
479 480	2012: New Advances in the Understanding of Tendonopathies 2, Colorado, pp. 48-54.
481	O'Meara, B., Bladon, B., Parkin, T.D., Fraser, B., Lischer, C.J., 2010. An investigation of the
482	relationship between race performance and superficial digital flexor tendonitis in the
483	Thoroughbred racehorse. Equine Veterinary Journal 42, 322-326.
484	
485	Parente, E.J., Tulleners, E.P., Southwood, L.L., 2008. Long-term study of partial
486	arytenoidectomy with primary mucosal closure in 76 Thoroughbred racehorses (1992-
487	2006). Equine Veterinary Journal 40, 214-218.
488	
489 490	Pinchbeck, G.L., Clegg, P.D., Proudman, C.J., Stirk, A., Morgan, K.L., French, N.P., 2004. Horse injuries and racing practices in National Hunt racehorses in the UK: the results
490 491	of a prospective cohort study. Veterinary Journal 167, 45-52.
492	or a prospective conort study. Veterinary southar 107, 45-52.

493 494 495 496 497	Reardon, R.J., Boden, L.A., Mellor, D.J., Love, S., Newton, J.R., Stirk, A.J., Parkin, T.D., 2012. Risk factors for superficial digital flexor tendinopathy in Thoroughbred racehorses in hurdle starts in the UK (2001-2009). Equine Veterinary Journal 44, 564- 569.
498 499 500	Ross, M.W., Genovese, R.L., Dyson, S.J., Jorgensen, J.S., 2011. Superficial digital flexor tendonitis. In: Ross, M.W., Dyson, S.J. (Eds.) Diagnosis and Management of Lameness in the Horse, 2 nd Edn. W.B. Saunders, Saint Louis, USA, pp. 706-726.
501 502 503 504 505	Schnabel, L.V., Mohammed, H.O., Miller, B.J., McDermott, W.G., Jacobson, M.S., Santangelo, K.S., Fortier, L.A., 2007. Platelet rich plasma (PRP) enhances anabolic gene expression patterns in flexor digitorum superficialis tendons. Journal of Orthopaedic Research 25, 230-240.
505 506 507 508 509 510 511	Silver, I.A., Brown P.N., Goodship A.E., Lanyon L.E., McCullagh K.G., Perry G.C., Williams I.F., 1983. Biochemistry and pathology of tendon injury and healing, In: Silver I.A., Rossdale, P.D. (Eds.). Equine Veterinary Journal Supplement 1: A clinical and experimental study of tendon injury, healing and treatment in the horse. John Wiley and Sons, Ltd., Chichester, UK, 5-22.
512 513 514 515 516	Smith, R., McIlwraith, W., Schweitzer, R., Kadler, K., Cook, J., Caterson, B., Dakin, S., Heinegård, D., Screen, H., Stover, S., et al., 2014. Advances in the understanding of tendinopathies: a report on the second Havemeyer Workshop on Equine Tendon Disease. Equine Veterinary Journal 46, 4-9.
517 518 519 520 521	Smith, R.K., Korda, M., Blunn, G.W., Goodship, A.E., 2003. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Veterinary Journal 35, 99- 102.
522 523 524	Smith, R.K., McIlwraith, C.W., 2012. Consensus on equine tendon disease: building on the 2007 Havemeyer symposium. Equine Veterinary Journal 44, 2-6.
525 526 527	Smith, R.K., Webbon, P.M., 2005. Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn? British Journal of Sports Medicine 39, 582-584.
528 529 530 531 532 533	Smith, R.K.W., Birch, H.L., Goodman, S., Heinegård, D., Goodship, A.E., 2002. The influence of ageing and exercise on tendon growth and degeneration—hypotheses for the initiation and prevention of strain-induced tendinopathies. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 133, 1039-1050.
534 535 536	Stromberg.B, Tufvesso.G, Nilsson, G., 1974. Effect of surgical splitting on vascular reactions in superficial flexor tendon of horse. Journal of the American Veterinary Medical Association 164, 57-60.
537 538 539 540 541	Sundman, E.A., Cole, B.J., Fortier, L.A., 2011. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. American Journal of Sports Medicine 39, 2135-2140.

542 543 544 545	Textor, J.A., Tablin, F., 2012. Activation of equine platelet-rich plasma: comparison of methods and characterization of equine autologous thrombin. Veterinary Surgery 41, 784-794.
546 547 548	Waselau, M., Sutter, W.W., Genovese, R.L., Bertone, A.L., 2008. Intralesional injection of platelet-rich plasma followed by controlled exercise for treatment of midbody suspensory ligament desmitis in Standardbred racehorses. Journal of the American
549 550	Veterinary Medical Association 232, 1515-1520.
551 552 553 554	Watts, A.E., Yeager, A.E., Kopyov, O.V., Nixon, A.J., 2011. Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model. Stem Cell Research and Therapy 2, 4.
555 556 557 558	Weller, R., Pfau, T., Verheyen, K., May, S.A., Wilson, A.M., 2006. The effect of conformation on orthopaedic health and performance in a cohort of National Hunt racehorses: preliminary results. Equine Veterinary Journal 38, 622-627.
559 560 561 562	Wilmink, J., Wilson, A.M., Goodship, A.E., 1992. Functional significance of the morphology and micromechanics of collagen fibres in relation to partial rupture of the superficial digital flexor tendon in racehorses. Research in Veterinary Science 53, 354-359.
563 564 565 566 567	Witte, T.H., Yeager, A.E., Nixon, A.J., 2011. Intralesional injection of insulin-like growth factor-I for treatment of superficial digital flexor tendonitis in Thoroughbred racehorses: 40 cases (2000-2004). Journal of the American Veterinary Medical Association 239, 992-997.
568 569 570 571	Woodie, J.B., Ducharme, N.G., Kanter, P., Hackett, R.P., Erb, H.N., 2005. Surgical advancement of the larynx (laryngeal tie-forward) as a treatment for dorsal displacement of the soft palate in horses: a prospective study 2001-2004. Equine Veterinary Journal 37, 418-423.
	Receive

572 Figure legend

- 573 Fig. 1. Inclusion criteria for a retrospective study of outcomes of superficial digital flexor
- tendon injuries in National Hunt racehorses.

575

Accepted Manuschik

- **Table 1.** Generic rehabilitation program recommended for superficial digital flexor tendon
- 577 injury in racehorses (Smith and McIlwraith, 2012)

Weeks after injury	Duration and nature of exercise
1-2	Box rest
3-4	10 min walking
5-6	15 min walking
7-8	20 min walking
9-10	25 min walking
11-12	30 min walking
13-14	35 min walking
15-16	40 min walking
17-20	40 min walking; 5 min trotting
21-24	35 min walking; 10 min trotting
25-28	30 min walking; 15 min trotting
29-32	45 min exercise daily with slow canter
33-40	45 min daily with fast work three times a week
41-48	Return to full competition/race training
	Cel Cel

Table 2. Horse origin, pre- and post-injury maximum racing post rating (RPR_{max}), number of 580 races and race distance, post-injury inter-race intervals (range) and rate of return to racing for 581 127 National Hunt racehorses treated for superficial digital flexor tendonitis and 254 matched 582 583 control horses.

	Injured horses ^a	Control horses ^a	P^{b}
Total	127	254	
Horse origin			
Ex-flat	17 (13.4%)	54 (21.3%)	
Ex-store	101 (79.5%)	186 (73.2%)	
Point-to-point	9 (7.1%)	14 (5.5%)	0.043
Pre-injury RPR _{max}	105 (0, 171)	106 (0, 170)	0.231
Post-injury RPR _{max}	95 (0, 163)	113 (0, 165)	< 0.001
Pre-injury races	7 (0, 66)	8 (0, 61)	0.094
Post-injury races	3 (0, 30)	9 (0, 61)	< 0.001
Pre-injury race distance (furlongs)	135 (0, 916)	138 (0, 1334)	0.204
Post-injury race distance (furlongs)	71 (0, 621)	180 (0, 1525)	< 0.001
Days from injury to first race	552 (152,	33 (1, 1090)	< 0.001
	1384)		
Median interval between post-injury races (days)	26 (12, 384)	28 (7, 799)	0.246
Minimum interval between post-injury races (days)	12 (1, 56)	9 (1, 799)	0.108
Maximum interval between post-injury races (days)	151 (14, 1138)	245 (15, 1441)	< 0.001
Timing of maximum interval between races (race	1 (1, 21)	4 (1, 61)	< 0.001
number since injury)			
Return to racing	00/110/70.00/	233/236	< 0.001
	92/118 (78.0%)	(98.7%)	
Three races completed	((110)(5500))	196/236	< 0.001
	66/118 (55.9%)	(83.1%)	
Five races completed	50/110 (40 40/)	168/236	< 0.001
	50/118 (42.4%)	(71.2%)	

^a Values shown are median (range) or proportion (%) as appropriate. 584

^b *P*-values were determined by Fisher's exact test (categorical variables) or one-way ANOVA 585 (continuous variables).

586

Table 3. Horse origin and lesion severity with vertical (within treatment) and horizontal (between treatment) percentages, for 127 National Hunt 587

588 horses with superficial digital flexor tendonitis. P-values were determined by Fisher's exact test.

						Tre	atment						
	Contro exercis		Bar firing		PRP		Tendor splittin		Tendon and bar	splitting firing	Retired	1	Р
Total	24	18.9%	38	29.9%	26	20.5%	18	14.2%	12	9.4%	9	7.1%	
Horse origin													
-	3	17.6%	3	17.6%	4	23.5%	4	23.5%	3	17.6%	0	0.0%	
Ex-flat horse	12.5%		7.9%		15.4%		22.2%		25.0%		0.0%		
	21	20.8%	31	30.7%	22	21.8%	12	11.9%	8	7.9%	7	6.9%	
Ex-store horse	87.5%		81.6%		84.6%		66.7%		66.7%		77.8%		
	0	0.0%	4	44.4%	0	0.0%	2	22.2%	1	11.1%	2	22.2%	
Point-to Point	0.0%		10.5%		0.0%		11.1%		8.3%		22.2%		0.158
Lesion Severity	y												
N (* 1 1	9	52.9%	6	35.3%	2	11.8%	0	0.0%	0	0.0%	0	0.0%	
Mild	37.5%		15.8%		7.7%		0.0%		0.0%		0.0%		
Madagata	12	15.4%	21	26.9%	20	25.6%	12	15.4%	11	14.1%	2	2.6%	
Moderate	50.0%		55.3%		76.9%	X	66.7%		91.7%		22.2%		
Savara	3	9.4%	11	34.4%	4	12.5%	6	18.8%	1	3.1%	7	21.9%	
Severe	12.5%		28.9%		15.4%		33.3%		8.3%		77.8%		< 0.001

589

PRP, intralesional platelet-rich plasma ^a *P* values were determined by Fisher's exact test 590

Table 4. Pre- and post-injury maximum racing post rating (RPR_{max}), number of races, race distance, and post-injury inter-race intervals, for 127 591 National Hunt horses with superficial digital flexor tendonitis. 592

			Treatr	ment ^a			
	Controlled exercise	Bar firing	PRP	Tendon splitting	Tendon splitting and bar firing	Retired	P ^b
Pre-injury RPR _{max}	104 (0, 171)	106 (0, 149)	112 (0, 156)	101 (58, 141)	112 (80, 132)	81 (14, 114)	0.107
Post-injury RPR _{max}	105 (0, 163)	86 (0, 149)	95 (0, 159)	91 (0, 138)	99 (0, 150)	,	0.540
Pre-injury races	7 (1, 32)	6 (0, 35)	7 (0, 42)	9 (1, 66)	6 (1, 20)	5 (1,15)	0.384
Post-injury races	5 (0, 17)	2 (0, 22)	4 (0, 30)	5 (0, 22)	3 (0, 19)		0.480
Pre-injury race distance (furlongs)	135 (0, 570)	128 (0, 725)	144 (0, 677)	209 (16, 916)	96 (13, 275)	98 (24, 277)	0.634
Post-injury race distance (furlongs)	102 (0, 341)	45 (0, 459)	69 (0, 621)	100 (0, 351)	77 (0, 376)	,	0.480
Days from injury to first race	513 (226, 824)	528 (152, 1202)	539 (256, 1148)	584 (325, 1384)	737 (267, 1188)		0.219
Median interval between	23 (12, 68)	28 (14, 384)	25 (14, 46)	25 (15, 304)	30 (21, 39)		0.560
post-injury races (days)	0						
Minimum interval between	9 (3, 39)	14 (1, 47)	14 (2, 25)	13 (1, 56)	10 (5, 30)		0.685
post-injury races (days)	\mathbf{O}						
Maximum interval between	118 (41, 763)	154 (14,	91 (15, 535)	179 (25,	204 (30, 385)		0.776
post-injury races (days)	6	731)		1138)			
Timing of maximum interval between races (race	2 (1, 8)	1 (1, 18)	2 (1, 21)	2 (1, 11)	2 (1, 11)		0.822
number since injury)							

593

594

PRP, intralesional platelet-rich plasma
^a Values shown are median (range).
^b P values were determined by one-way ANOVA. Except for pre- and post-injury RPR, all variables were log transformed prior to one-way 595

596 ANOVA.

Table 5. Rate of return to racing by treatment group, with vertical (within treatment) and horizontal (between treatment) percentages, for 127 597

598 National Hunt horses with superficial digital flexor tendonitis.

						Treatm	lent					
	Contro exercis		Bar firing		PRP		Tendor splittin		Tendon and bar	splitting firing	Retired	P^{a}
Total	24	18.9%	38	29.9%	26	20.5%	18	14.2%	12	9.4%	9 7.1%	
	21	22.8%	28	30.4%	20	21.7%	15	16.3%	8	8.7%		0.579
Return to racing	87.5%		73.7%		76.9%		83.3%		66.7%			
T	18	27.3%	15	22.7%	15	22.7%	12	18.2%	6	9.1%		0.068
Three races completed	75.0%		39.5%		57.7%		66.7%		50.0%			
T	12	24.0%	13	26.0%	11	22.0%	9	18.0%	5	10.0%		0.730
Five races completed	50.0%		34.2%		42.3%		50.0%	<u>}</u>	41.7%			
PRP, intralesional plate	let-rich	plasma										
^a <i>P</i> values were determi	ned by	Fisher's	s exact t	est	e e e e e e e e e e e e e e e e e e e							
				8								

PRP, intralesional platelet-rich plasma 599

^a *P* values were determined by Fisher's exact test 600

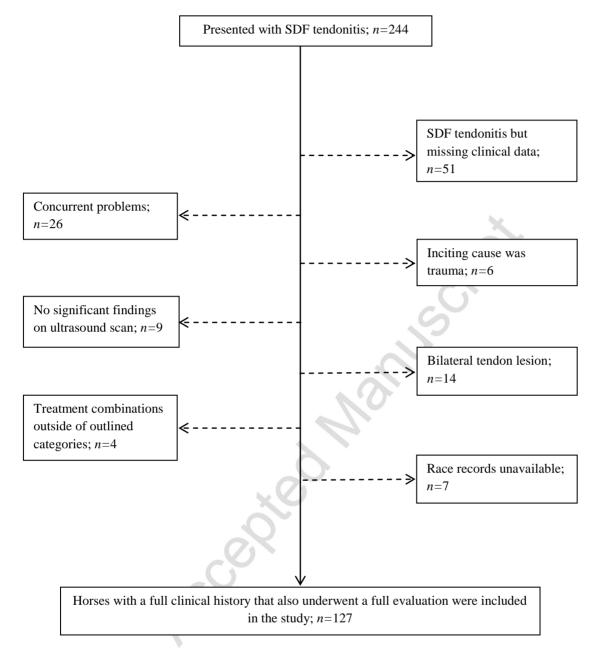
Table 6. Pre- and post-injury maximum racing post rating (RPR_{max}), number of races and race distance and post-injury inter-race intervals for 601

602	2 118 National Hunt racehorses that underwent treatment for superficial digital flexor tendonitis. This table ex	cludes horses that were retired.
-----	--	----------------------------------

		Lesion severity ^a	l	P ^b
	Mild	Moderate	Severe	Ρ
Pre-injury RPR _{max}	110 (0, 171)	106 (0,160)	103 (13,149)	0.972
Post-injury RPR _{max}	106 (0,163)	96 (0,154)	86 (0,150)	0.635
Pre-injury races	5 (0, 30)	7 (0, 42)	6 (1, 66)	0.338
Post-injury races	4 (0, 19)	4 (0, 30)	3 (0, 19)	0.588
Pre-injury race distance (furlongs)	96 (0, 570)	150 (0, 677)	135 (24, 916)	0.811
Post-injury race distance (furlongs)	93 (0, 401)	72 (0, 621)	61 (0, 384)	0.690
Days from injury to first race	610 (226, 812)	543 (152, 1384)	508 (281, 1202)	0.918
Median interval between post-injury races (days)	24 (16, 68)	28 (12, 384)	25 (14, 304)	0.925
Minimum interval between	10 (3, 27)	13 (1, 56)	11 (1, 36)	0.815
post-injury races (days)	0			
Maximum interval between	179 (24, 415)	143 (15, 1138)	167 (14, 763)	0.834
post-injury races (days)				
Timing of maximum interval between races (race number since injury)	1 (1, 13)	2 (1, 21)	1 (1, 11)	0.288

603

^a Values shown are median (range). ^b *P*-values were determined by one-way ANOVA. Except for pre- and post-injury RPR, all race variables were log transformed prior to one-way 604


ANOVA. 605

- Table 7. Rate of return to racing by lesion severity, with vertical (within severity) and 606
- horizontal (between severity) percentages, for 118 National Hunt racehorses that underwent 607
- treatment for superficial digital flexor tendonitis. This table excludes horses that were 608
- 609 retired.

				Lesion	severity			P^{a}
	Total	Mild		Modera	ate	Severe		I
Total		17		76		25		
Return to racing	92	13	14.1%	61	66.3%	18	19.6%	0.650
		76.5%		80.3%		72.0%		
Three races completed	66	10	15.2%	44	66.7%	12	18.2%	0.684
		58.8%		57.9%		48.0%		
Five races completed	50	7	14.0%	34	68.0%	9	18.0%	0.765
		41.1%		44.7%	0	36.0%		
^a <i>P</i> -values were determine	ined by	Fisher's	exact tes	st.				
	6							
	0							
	Ś							
	3							
	3							
	Ś							
PC	3							
R								
PC	Ś							

^a *P*-values were determined by Fisher's exact test. 610

611 Figure 1.

612

613

30