Skip to main content

Research Repository

Advanced Search

Monomeric amyloid-ß reduced amyloid-ß oligomer-induced synapse damage in neuronal cultures (2018)
Journal Article
Bate, C., & Williams, A. (2018). Monomeric amyloid-ß reduced amyloid-ß oligomer-induced synapse damage in neuronal cultures. Neurobiology of Disease, 111, 48-58. https://doi.org/10.1016/j.nbd.2017.12.007

Alzheimer's disease is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) in the brain. Aβ oligomers are believed to cause synapse damage resulting in the memory deficits that are characteristic of this diseas... Read More about Monomeric amyloid-ß reduced amyloid-ß oligomer-induced synapse damage in neuronal cultures.

Valproic acid and its congener propylisopropylacetic acid reduced the amount of soluble amyloid-ß oligomers released from 7PA2 cells (2018)
Journal Article
Williams, R. S. B., & Bate, C. (2018). Valproic acid and its congener propylisopropylacetic acid reduced the amount of soluble amyloid-ß oligomers released from 7PA2 cells. Neuropharmacology, 128, 54-62. https://doi.org/10.1016/j.neuropharm.2017.09.031

The amyloid hypothesis of Alzheimer's disease suggests that synaptic degeneration and pathology is caused by the accumulation of amyloid-β (Aβ) peptides derived from the amyloid precursor protein (APP). Subsequently, soluble Aβ oligomers cause the lo... Read More about Valproic acid and its congener propylisopropylacetic acid reduced the amount of soluble amyloid-ß oligomers released from 7PA2 cells.