Skip to main content

Research Repository

Advanced Search

The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis (2016)
Journal Article
Ho, N. A. T., Dawes, S. S., Crowe, A. M., Casabon, I., Gao, C., Kendall, S. L., …Lott, J. S. (2016). The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis. Journal of Biological Chemistry, 291(14), 7256-7266. https://doi.org/10.1074/jbc.M115.707760

Cholesterol can be a major carbon source for Mycobacterium tuberculosis during infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor tha... Read More about The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis.

Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis (2014)
Journal Article
Evangelopoulos, D., Gupta, A., Lack, N. A., Maitra, A., Ten Bokum, A. M. C., Kendall, S. L., …Bhakta, S. (2014). Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis. Tuberculosis, 94(6), 664-671. https://doi.org/10.1016/j.tube.2014.08.007

MSMEG_0307 is annotated as a transcriptional regulator belonging to the AraC protein family and is located adjacent to the arylamine N-acetyltransferase (nat) gene in Mycobacterium smegmatis, in a gene cluster, conserved in most environmental mycobac... Read More about Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis.