Skip to main content

Research Repository

Advanced Search

Outputs (26)

Virtual manipulation of tail postures of a gliding barn owl (Tyto alba) demonstrates drag minimisation when gliding (2022)
Journal Article
Song, J., Cheney, J., Bomphrey, R., & Usherwood, J. (2023). Virtual manipulation of tail postures of a gliding barn owl (Tyto alba) demonstrates drag minimisation when gliding. Journal of the Royal Society, Interface, https://doi.org/10.1098/rsif.2021.0710

Aerodynamic functions of the avian tail have been studied previously using observations of bird flight, physical models in wind tunnels, theoretical modelling, and flow visualization. However, none of these approaches has provided rigorous, quantitat... Read More about Virtual manipulation of tail postures of a gliding barn owl (Tyto alba) demonstrates drag minimisation when gliding.

Bird wings act as a suspension system that rejects gusts (2020)
Journal Article
Cheney, J. A., Stevenson, J. P. J., Durston, N. E., Song, J., Usherwood, J. R., Bomphrey, R. J., & Windsor, S. P. (2020). Bird wings act as a suspension system that rejects gusts. Proceedings of the Royal Society B: Biological Sciences, 287(1937), 20201748. https://doi.org/10.1098/rspb.2020.1748

Musculoskeletal systems cope with many environmental perturbations without neurological control. These passive preflex responses aid animals to move swiftly through complex terrain. Whether preflexes play a substantial role in animal flight is uncert... Read More about Bird wings act as a suspension system that rejects gusts.

Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles (2020)
Journal Article
Nakata, T., Phillips, N., Simões, P., Russell, I. J., Cheney, J. A., Walker, S. M., & Bomphrey, R. J. (2020). Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles. Science, 368(6491), 634-637. https://doi.org/10.1126/science.aaz9634

Some flying animals use active sense to perceive and avoid obstacles. Nocturnal mosquitoes exhibit a behavioral response to divert away from surfaces when vision is unavailable, indicating a short-range, mechanosensory collision avoidance mechanism.... Read More about Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles.

Recent progress on the flight of dragonflies and damselflies (2020)
Journal Article
Nakata, T., Henningsson, P., Lin, H., & Bomphrey, R. J. (2020). Recent progress on the flight of dragonflies and damselflies. International Journal of Odonatology, 23(1), 41-49. https://doi.org/10.1080/13887890.2019.1688502

Remarkable flight performance is key to the survival of adult Odonata. They integrate varied three-dimensional architectures and kinematics of the wings, unsteady aerodynamics, and sensory feedback control in order to achieve agile flight. Therefore,... Read More about Recent progress on the flight of dragonflies and damselflies.

High aerodynamic lift from the tail reduces drag in gliding raptors (2020)
Journal Article
Usherwood, J. R., Cheney, J. A., Song, J., Windsor, S. P., Stevenson, J. P. J., Dierksheide, U., …Bomphrey, R. J. (2020). High aerodynamic lift from the tail reduces drag in gliding raptors. Journal of Experimental Biology, 223, https://doi.org/10.1242/jeb.214809

Many functions have been postulated for the aerodynamic role of the avian tail during steady-state flight. By analogy with conventional aircraft, the tail might provide passive pitch stability if it produced very low or negative lift. Alternatively,... Read More about High aerodynamic lift from the tail reduces drag in gliding raptors.

Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control (2018)
Journal Article
Bomphrey, R. J., & Godoy-Diana, R. (2018). Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control. Current Opinion in Insect Science, 30, https://doi.org/10.1016/j.cois.2018.08.003

Flying insects impress by their versatility and have been a recurrent source of inspiration for engineering devices. A large body of literature has focused on various aspects of insect flight, with an essential part dedicated to the dynamics of flapp... Read More about Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control.

Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight (2017)
Journal Article
Bomphrey, R. J., Nakata, T., Phillips, N., & Walker, S. M. (2017). Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature, 544, 92-95. https://doi.org/10.1038/nature21727

Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-domi... Read More about Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight.

Flight of the dragonflies and damselflies (2016)
Journal Article
Bomphrey, R. J., Nakata, T., Henningsson, P., & Lin, H. (2016). Flight of the dragonflies and damselflies. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1704), 20150389. https://doi.org/10.1098/rstb.2015.0389

This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the di... Read More about Flight of the dragonflies and damselflies.

Morphomechanical Innovation Drives Explosive Seed Dispersal (2016)
Journal Article
Hofhuis, H., Moulton, D., Lessinnes, T., Routier-Kierzkowska, A. L., Bomphrey, R. J., Mosca, G., …Hay, A. (2016). Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell, 166, 222-233. https://doi.org/10.1016/j.cell.2016.05.002

How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds... Read More about Morphomechanical Innovation Drives Explosive Seed Dispersal.