Skip to main content

Research Repository

Advanced Search

All Outputs (61)

Identification of mouse gaits using a novel force-sensing exercise wheel (2015)
Journal Article
Smith, B. J. H., Cullingford, L., & Usherwood, J. R. (2015). Identification of mouse gaits using a novel force-sensing exercise wheel. Journal of Applied Physiology, 119(6), 704-718. https://doi.org/10.1152/japplphysiol.01014.2014

The gaits that animals use can provide information on neurological and musculoskeletal disorders, as well as the biomechanics of locomotion. Mice are a common research model in many fields; however, there is no consensus in the literature on how (and... Read More about Identification of mouse gaits using a novel force-sensing exercise wheel.

Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis (2015)
Journal Article
Voelkl, B., Portugal, S. J., Unsoeld, M., Usherwood, J. R., Wilson, A. M., & Fritz, J. (2015). Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. https://doi.org/10.1073/pnas.1413589112

One conspicuous feature of several larger bird species is their annual migration in V-shaped or echelon formation. When birds are flying in these formations, energy savings can be achieved by using the aerodynamic up-wash produced by the preceding bi... Read More about Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis.

Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight (2014)
Journal Article
Portugal, S. J., Hubel, T. Y., Fritz, J., Heese, S., Trobe, D., Voelkl, B., …Usherwood, J. R. (2014). Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature, 505(7483), 399-+. https://doi.org/10.1038/nature12939

Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long i... Read More about Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.

Vaulting mechanics successfully predict decrease in walk-run transition speed with incline (2013)
Journal Article
Hubel, T. Y., & Usherwood, J. R. (2013). Vaulting mechanics successfully predict decrease in walk-run transition speed with incline. Biology Letters, 9(2), https://doi.org/10.1098/rsbl.2012.1121

There is an ongoing debate about the reasons underlying gait transition in terrestrial locomotion. In bipedal locomotion, the ‘compass gait’, a reductionist model of inverted pendulum walking, predicts the boundaries of speed and step length within w... Read More about Vaulting mechanics successfully predict decrease in walk-run transition speed with incline.

Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter
Journal Article
Usherwood, J. R. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter. https://doi.org/10.1088/1748-3182/4/1/015003

Predictions from aerodynamic theory often match biological observations very poorly. Many insects and several bird species habitually hover, frequently flying at low advance ratios. Taking helicopter-based aerodynamic theory, wings functioning predom... Read More about Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter.

An extension to the collisional model of the energetic cost of support qualitatively explains trotting and the trot–canter transition
Journal Article
Usherwood, J. R. (in press). An extension to the collisional model of the energetic cost of support qualitatively explains trotting and the trot–canter transition. https://doi.org/10.1002/jez.2268

The majority of terrestrial mammals adopt distinct, discrete gaits across their speed range. Though there is evidence that walk, trot and gallop may be selected at speeds consistent with minimizing metabolic cost (Hoyt and Taylor, 1981, Nature, 291,... Read More about An extension to the collisional model of the energetic cost of support qualitatively explains trotting and the trot–canter transition.