Skip to main content

Research Repository

Advanced Search

Identifying Fibroblast Growth Factor Receptor 3 as a Mediator of Periosteal Osteochondral Differentiation through the Construction of microRNA-Based Interaction Networks

Wells, Leah M.; Roberts, Helen C.; Luyten, Frank P.; Roberts, Scott J.

Authors

Leah M. Wells

Helen C. Roberts

Frank P. Luyten

Scott J. Roberts



Contributors

Scott Roberts
Project Leader

Abstract

Human periosteum-derived progenitor cells (hPDCs) have the ability to differentiate towards both the chondrogenic and osteogenic lineages. This coordinated and complex osteochondrogenic differentiation process permits endochondral ossification and is essential in bone development and repair. We have previously shown that humanised cultures of hPDCs enhance their osteochondrogenic potentials in vitro and in vivo; however, the underlying mechanisms are largely unknown. This study aimed to identify novel regulators of hPDC osteochondrogenic differentiation through the construction of miRNA-mRNA regulatory networks derived from hPDCs cultured in human serum or foetal bovine serum as an alternative in silico strategy to serum characterisation. Sixteen differentially expressed miRNAs (DEMis) were identified in the humanised culture. In silico analysis of the DEMis with TargetScan allowed for the identification of 1503 potential miRNA target genes. Upon comparison with a paired RNAseq dataset, a 4.5% overlap was observed (122 genes). A protein-protein interaction network created with STRING interestingly identified FGFR3 as a key network node, which was further predicted using multiple pathway analyses. Functional analysis revealed that hPDCs with the activating mutation FGFR3N540K displayed increased expressions of chondrogenic gene markers when cultured under chondrogenic conditions in vitro and displayed enhanced endochondral bone formation in vivo. A further histological analysis uncovered known downstream mediators involved in FGFR3 signalling and endochondral ossification to be upregulated in hPDC FGFR3N540K-seeded implants. This combinational approach of miRNA-mRNA-protein network analysis with in vitro and in vivo characterisation has permitted the identification of FGFR3 as a novel mediator of hPDC biology. Furthermore, this miRNA-based workflow may also allow for the identification of drug targets, which may be of relevance in instances of delayed fracture repair.

Citation

Wells, L. M., Roberts, H. C., Luyten, F. P., & Roberts, S. J. (2023). Identifying Fibroblast Growth Factor Receptor 3 as a Mediator of Periosteal Osteochondral Differentiation through the Construction of microRNA-Based Interaction Networks. Biology, 12(11), 1381. https://doi.org/10.3390/biology12111381

Journal Article Type Article
Acceptance Date Oct 24, 2023
Online Publication Date Oct 28, 2023
Publication Date Oct 28, 2023
Deposit Date Feb 13, 2024
Publicly Available Date Feb 13, 2024
Journal Biology
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 12
Issue 11
Pages 1381
DOI https://doi.org/10.3390/biology12111381
Keywords General Agricultural and Biological Sciences; General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology

Files




You might also like



Downloadable Citations