J P Charles
A dynamic simulation of musculoskeletal function in the mouse hindlimb during trotting locomotion
Charles, J P; Cappellari, I; Hutchinson, J R
Authors
I Cappellari
J R Hutchinson
Abstract
Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations.
Citation
Charles, J. P., Cappellari, I., & Hutchinson, J. R. (2018). A dynamic simulation of musculoskeletal function in the mouse hindlimb during trotting locomotion. Frontiers in Bioengineering and Biotechnology, 6(61), https://doi.org/10.3389/fbioe.2018.00061
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 26, 2018 |
Publication Date | May 16, 2018 |
Deposit Date | Jun 26, 2018 |
Publicly Available Date | Jun 27, 2018 |
Journal | Frontiers in Bioengineering and Biotechnology |
Electronic ISSN | 2296-4185 |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 6 |
Issue | 61 |
DOI | https://doi.org/10.3389/fbioe.2018.00061 |
Public URL | https://rvc-repository.worktribe.com/output/1387259 |
Files
11498.pdf
(2.7 Mb)
PDF
You might also like
The evolution of femoral morphology in giant non-avian theropod dinosaurs
(2024)
Journal Article
Estimation of the forces exerted on the limb long bones of a White Rhinoceros
(2024)
Journal Article
Downloadable Citations
About RVC Repository
Administrator e-mail: publicationsrepos@rvc.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search