J R Usherwood
The grazing gait, and implications of toppling table geometry for primate footfall sequences
Usherwood, J R; Smith, B J H
Authors
B J H Smith
Abstract
Many medium and large herbivores locomote forwards very slowly and intermittently when grazing. While the footfall order during grazing is the same as for walking, the relative fore–hind timing—phasing—is quite different. Extended periods of static stability are clearly required during grazing; however, stability requirements are insufficient to account for the timing. Aspects of relatively rapid rolling and pitching—toppling due to the resistance of the back to bending and twisting—can be included in a simplifying geometric model to explain the observation that, in grazing livestock, a step forward with a forefoot is consistently and immediately followed by a step forward from the hind; but not vice versa. The same principles and geometry, but applied to the footfall pattern of walking primates, show that toppling would occur at a different point in the gait cycle. This provides a potential account for the distinctive diagonal-sequence footfall pattern of primates, as it prevents the instant of toppling from being at forefoot placement. Careful and controlled hand positioning would thus be facilitated, presumably beneficial to walking on top of branches, despite a slight energetic cost compared with the usual lateral sequence pattern of horses.
Citation
Usherwood, J. R., & Smith, B. J. H. (2018). The grazing gait, and implications of toppling table geometry for primate footfall sequences. Biology Letters, 14(5), https://doi.org/10.1098/rsbl.2018.0137
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 17, 2018 |
Publication Date | May 16, 2018 |
Deposit Date | Jun 15, 2018 |
Publicly Available Date | Jun 18, 2018 |
Journal | Biology Letters |
Print ISSN | 1744-9561 |
Electronic ISSN | 1744-957X |
Publisher | The Royal Society |
Peer Reviewed | Peer Reviewed |
Volume | 14 |
Issue | 5 |
DOI | https://doi.org/10.1098/rsbl.2018.0137 |
Public URL | https://rvc-repository.worktribe.com/output/1387278 |
Files
11463.pdf
(449 Kb)
PDF
You might also like
Investigation of models to estimate flight performance of gliding birds from wakes
(2024)
Journal Article
The functions of leg muscles, structures and mechanisms in running
(2024)
Journal Article
Dynamics of hinged wings in strong upward gusts
(2023)
Journal Article
Usherwood 27Jul2021
(2022)
Journal Article
Downloadable Citations
About RVC Repository
Administrator e-mail: publicationsrepos@rvc.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search