T Y Hubel
Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands
Hubel, T Y; Usherwood, J R
Authors
J R Usherwood
Abstract
Terrestrial locomotion on legs is energetically expensive. Compared with cycling, or with locomotion in swimming or flying animals, walking and running are highly uneconomical. Legged gaits that minimise mechanical work have previously been identified and broadly match walking and running at appropriate speeds. Furthermore, the ‘cost of muscle force’ approaches are effective in relating locomotion kinetics to metabolic cost. However, few accounts have been made for why animals deviate from either work-minimising or muscle-force-minimising strategies. Also, there is no current mechanistic account for the scaling of locomotion kinetics with animal size and speed. Here, we report measurements of ground reaction forces in walking children and adult humans, and their stance durations during running. We find that many aspects of gait kinetics and kinematics scale with speed and size in a manner that is consistent with minimising muscle activation required for the more demanding between mechanical work and power: spreading the duration of muscle action reduces activation requirements for power, at the cost of greater work demands. Mechanical work is relatively more demanding for larger bipeds – adult humans – accounting for their symmetrical M-shaped vertical force traces in walking, and relatively brief stance durations in running compared with smaller bipeds – children. The gaits of small children, and the greater deviation of their mechanics from work-minimising strategies, may be understood as appropriate for their scale, not merely as immature, incompletely developed and energetically sub-optimal versions of adult gaits.
Citation
Hubel, T. Y., & Usherwood, J. R. (2015). Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands. Journal of Experimental Biology, 218(PT 18), 2830-2839. https://doi.org/10.1242/jeb.122135
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 5, 2015 |
Publication Date | Sep 23, 2015 |
Deposit Date | Jul 8, 2015 |
Publicly Available Date | Jul 8, 2015 |
Journal | JOURNAL OF EXPERIMENTAL BIOLOGY |
Print ISSN | 0022-0949 |
Electronic ISSN | 1477-9145 |
Publisher | The Company of Biologists |
Peer Reviewed | Peer Reviewed |
Volume | 218 |
Issue | PT 18 |
Pages | 2830-2839 |
DOI | https://doi.org/10.1242/jeb.122135 |
Public URL | https://rvc-repository.worktribe.com/output/1399709 |
Files
9297.pdf
(1.8 Mb)
PDF
You might also like
Investigation of models to estimate flight performance of gliding birds from wakes
(2024)
Journal Article
The functions of leg muscles, structures and mechanisms in running
(2024)
Journal Article
Dynamics of hinged wings in strong upward gusts
(2023)
Journal Article
Usherwood 27Jul2021
(2022)
Journal Article
Downloadable Citations
About RVC Repository
Administrator e-mail: publicationsrepos@rvc.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search