SO Olorunleke
Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria
Olorunleke, SO; Kirchner, M; Duggett, N; AbuOun, M; Okorie-Kanu, OJ; Stevens, K; Card, RM; Chah, KF; Nwanta, JA; Brunton, LA; Anjum, MF
Authors
M Kirchner
N Duggett
M AbuOun
OJ Okorie-Kanu
K Stevens
RM Card
KF Chah
JA Nwanta
LA Brunton
MF Anjum
Abstract
The rise in antimicrobial resistance (AMR) in bacteria is reducing therapeutic options for livestock and human health, with a paucity of information globally. To fill this gap, a One-Health approach was taken by sampling livestock on farms (n = 52), abattoir (n = 8), and animal markets (n = 10), and in-contact humans in Southeast Nigeria. Extended spectrum cephalosporin (ESC)-resistant (ESC-R) Escherichia coli was selectively cultured from 975 healthy livestock faecal swabs, and hand swabs from in-contact humans. Antimicrobial susceptibility testing (AST) was performed on all ESC-R E. coli. For isolates showing a multi-drug resistance (MDR) phenotype (n = 196), quantitative real-time PCR (qPCR) was performed for confirmation of extended-spectrum beta-lactamase (ESBL) and carbapenemase genes. Whole-genome sequencing (WGS) was performed on a subset (n = 157) for detailed molecular characterisation. The results showed ESC-R E. coli was present in 41.2% of samples, with AST results indicating 48.8% of isolates were phenotypically MDR. qPCR confirmed presence of ESBL genes, with bla(CTX-M) present in all but others in a subset [bla(TEM) (62.8%) and bla(SHV) (0.5%)] of isolates; none harboured transferable carbapenemase genes. Multi-locus sequence typing identified 34 Sequence Types (ST) distributed among different sampling levels; ST196 carrying bla(CTX-M-55) was predominant in chickens. Large numbers of single nucleotide polymorphisms (SNPs) in the core genome of isolates, even within the same clade by phylogenetic analysis, indicated high genetic diversity. AMR genotyping indicated the predominant bla(CTX-M) variant was bla(CTX-M-15) (87.9%), although bla(CTX-M-55), bla(CTX-M-64,) and bla(CTX-M-65) were present; it was notable that bla(CTX-M-1), common in livestock, was absent. Other predominant AMR genes included: sul2, qnrS1, strB, bla(TEM-1b), tetA-v2, and dfrA14, with prevalence varying according to host livestock species. A bla(CTX-M-15) harbouring plasmid from livestock isolates in Ebonyi showed high sequence identity to one from river/sewage water in India, indicating this ESBL plasmid to be globally disseminated, being present beyond the river environment. In conclusion, ESC-R E. coli was widespread in livestock and in-contact humans from Southeast Nigeria. WGS data indicated the isolates were genetically highly diverse, probably representing true diversity of wild type E. coli; they were likely to be MDR with several harbouring bla(CTX-M-15.) Surprisingly, human isolates had highest numbers of AMR genes and pigs the least.
Citation
Olorunleke, S., Kirchner, M., Duggett, N., AbuOun, M., Okorie-Kanu, O., Stevens, K., Card, R., Chah, K., Nwanta, J., Brunton, L., & Anjum, M. (2022). Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria. Frontiers in Microbiology, 13, https://doi.org/10.3389/fmicb.2022.937968
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 5, 2022 |
Online Publication Date | Jul 22, 2022 |
Publication Date | 2022 |
Deposit Date | Aug 8, 2023 |
Publicly Available Date | Aug 8, 2023 |
Electronic ISSN | 1664-302X |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 13 |
DOI | https://doi.org/10.3389/fmicb.2022.937968 |
Keywords | Escherichia coli; ESBL; AMR; cefotaxime; livestock; in-contact humans; Southeast Nigeria |
Files
Molecular Characterization Of Extended Spectrum Cephalosporin Resistant Escherichia Coli Isolated From Livestock And In-contact Humans In Southeast Nigeria
(1.9 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Version
VoR
You might also like
Downloadable Citations
About RVC Repository
Administrator e-mail: publicationsrepos@rvc.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search