Skip to main content

Research Repository

Advanced Search

Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria

Olorunleke, SO; Kirchner, M; Duggett, N; AbuOun, M; Okorie-Kanu, OJ; Stevens, K; Card, RM; Chah, KF; Nwanta, JA; Brunton, LA; Anjum, MF

Authors

SO Olorunleke

M Kirchner

N Duggett

M AbuOun

OJ Okorie-Kanu

K Stevens

RM Card

KF Chah

JA Nwanta

LA Brunton

MF Anjum



Abstract

The rise in antimicrobial resistance (AMR) in bacteria is reducing therapeutic options for livestock and human health, with a paucity of information globally. To fill this gap, a One-Health approach was taken by sampling livestock on farms (n = 52), abattoir (n = 8), and animal markets (n = 10), and in-contact humans in Southeast Nigeria. Extended spectrum cephalosporin (ESC)-resistant (ESC-R) Escherichia coli was selectively cultured from 975 healthy livestock faecal swabs, and hand swabs from in-contact humans. Antimicrobial susceptibility testing (AST) was performed on all ESC-R E. coli. For isolates showing a multi-drug resistance (MDR) phenotype (n = 196), quantitative real-time PCR (qPCR) was performed for confirmation of extended-spectrum beta-lactamase (ESBL) and carbapenemase genes. Whole-genome sequencing (WGS) was performed on a subset (n = 157) for detailed molecular characterisation. The results showed ESC-R E. coli was present in 41.2% of samples, with AST results indicating 48.8% of isolates were phenotypically MDR. qPCR confirmed presence of ESBL genes, with bla(CTX-M) present in all but others in a subset [bla(TEM) (62.8%) and bla(SHV) (0.5%)] of isolates; none harboured transferable carbapenemase genes. Multi-locus sequence typing identified 34 Sequence Types (ST) distributed among different sampling levels; ST196 carrying bla(CTX-M-55) was predominant in chickens. Large numbers of single nucleotide polymorphisms (SNPs) in the core genome of isolates, even within the same clade by phylogenetic analysis, indicated high genetic diversity. AMR genotyping indicated the predominant bla(CTX-M) variant was bla(CTX-M-15) (87.9%), although bla(CTX-M-55), bla(CTX-M-64,) and bla(CTX-M-65) were present; it was notable that bla(CTX-M-1), common in livestock, was absent. Other predominant AMR genes included: sul2, qnrS1, strB, bla(TEM-1b), tetA-v2, and dfrA14, with prevalence varying according to host livestock species. A bla(CTX-M-15) harbouring plasmid from livestock isolates in Ebonyi showed high sequence identity to one from river/sewage water in India, indicating this ESBL plasmid to be globally disseminated, being present beyond the river environment. In conclusion, ESC-R E. coli was widespread in livestock and in-contact humans from Southeast Nigeria. WGS data indicated the isolates were genetically highly diverse, probably representing true diversity of wild type E. coli; they were likely to be MDR with several harbouring bla(CTX-M-15.) Surprisingly, human isolates had highest numbers of AMR genes and pigs the least.

Citation

Olorunleke, S., Kirchner, M., Duggett, N., AbuOun, M., Okorie-Kanu, O., Stevens, K., …Anjum, M. (2022). Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria. Frontiers in Microbiology, 13, https://doi.org/10.3389/fmicb.2022.937968

Journal Article Type Article
Acceptance Date Jul 5, 2022
Online Publication Date Jul 22, 2022
Publication Date 2022
Deposit Date Aug 8, 2023
Publicly Available Date Aug 8, 2023
Publisher Frontiers Media
Peer Reviewed Peer Reviewed
Volume 13
DOI https://doi.org/10.3389/fmicb.2022.937968
Keywords Escherichia coli; ESBL; AMR; cefotaxime; livestock; in-contact humans; Southeast Nigeria

Files




You might also like



Downloadable Citations