Skip to main content

Research Repository

Advanced Search

All Outputs (2)

The scaling or ontogeny of human gait kinetics and walk-run transition: The implications of work vs. peak power minimization (2018)
Journal Article
Usherwood, J. R., Hubel, T. Y., Smith, B. J. H., Self Davies, Z. T., & Sobota, G. (2018). The scaling or ontogeny of human gait kinetics and walk-run transition: The implications of work vs. peak power minimization. Journal of Biomechanics, 81, 12-21. https://doi.org/10.1016/j.jbiomech.2018.09.004

A simple model is developed to find vertical force profiles and stance durations that minimize either limb mechanical work or peak power demands during bipedal locomotion. The model predicts that work minimization is achieved with a symmetrical verti... Read More about The scaling or ontogeny of human gait kinetics and walk-run transition: The implications of work vs. peak power minimization.

The grazing gait, and implications of toppling table geometry for primate footfall sequences (2018)
Journal Article
Usherwood, J. R., & Smith, B. J. H. (2018). The grazing gait, and implications of toppling table geometry for primate footfall sequences. Biology Letters, 14(5), https://doi.org/10.1098/rsbl.2018.0137

Many medium and large herbivores locomote forwards very slowly and intermittently when grazing. While the footfall order during grazing is the same as for walking, the relative fore–hind timing—phasing—is quite different. Extended periods of static s... Read More about The grazing gait, and implications of toppling table geometry for primate footfall sequences.