T Nakata
A CFD-informed quasi-steady model of flapping-wing aerodynamics
Nakata, T; Liu, H; Bomphrey, R J
Authors
H Liu
R J Bomphrey
Abstract
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimization is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into quasi-steady forces and parameterized based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power as the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterized on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. This demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned aerial systems.
Citation
Nakata, T., Liu, H., & Bomphrey, R. J. (2015). A CFD-informed quasi-steady model of flapping-wing aerodynamics. Journal of Fluid Mechanics, 783, 323-343. https://doi.org/10.1017/jfm.2015.537
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 8, 2015 |
Publication Date | Oct 16, 2015 |
Deposit Date | Feb 4, 2016 |
Publicly Available Date | Apr 20, 2018 |
Journal | Journal of Fluid Mechanics |
Print ISSN | 0022-1120 |
Electronic ISSN | 1469-7645 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 783 |
Pages | 323-343 |
DOI | https://doi.org/10.1017/jfm.2015.537 |
Public URL | https://rvc-repository.worktribe.com/output/1399441 |
Files
10011.pdf
(1.9 Mb)
PDF
You might also like
Multimodal integration: Audio-visual integration by swarming mosquitoes
(2024)
Journal Article
Investigation of models to estimate flight performance of gliding birds from wakes
(2024)
Journal Article
Flow sensing on dragonfly wings
(2024)
Journal Article
Dynamics of hinged wings in strong upward gusts
(2023)
Journal Article
Seeing with sound; surface detection and avoidance by sensing self-generated noise
(2023)
Journal Article
Downloadable Citations
About RVC Repository
Administrator e-mail: publicationsrepos@rvc.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search