A F Pereira
Predicting cortical bone adaptation to axial loading in the mouse tibia
Pereira, A F; Javaheri, B; Pitsillides, A A; Shefelbine, S J
Authors
B Javaheri
A A Pitsillides
S J Shefelbine
Abstract
The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms.
Citation
Pereira, A. F., Javaheri, B., Pitsillides, A. A., & Shefelbine, S. J. (2015). Predicting cortical bone adaptation to axial loading in the mouse tibia. https://doi.org/10.1098/rsif.2015.0590
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 31, 2015 |
Publication Date | Aug 26, 2015 |
Deposit Date | Sep 5, 2015 |
Publicly Available Date | Apr 25, 2019 |
Journal | JOURNAL OF THE ROYAL SOCIETY INTERFACE |
Peer Reviewed | Peer Reviewed |
Volume | 12 |
Issue | 110 |
DOI | https://doi.org/10.1098/rsif.2015.0590 |
Public URL | https://rvc-repository.worktribe.com/output/1399878 |
Files
9615.pdf
(1.8 Mb)
PDF
You might also like
Expression of semaphorin-3A in the joint and role in osteoarthritis
(2024)
Journal Article
Bone marrow lesions: plugging the holes in our knowledge using animal models
(2023)
Journal Article
Downloadable Citations
About RVC Repository
Administrator e-mail: publicationsrepos@rvc.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search