Skip to main content

Research Repository

Advanced Search

Poly I:C stimulation in-vitro as a marker for an antiviral response in different cell types generated from Buffalo (Bubalus bubalis)

Vats, A; Gautam, D; Maharana, J; Chera, J S; Kumar, S; Werling, D; De, S


A Vats

D Gautam

J Maharana

J S Chera

S Kumar

D Werling

S De


The innate immune system is activated upon virus invasion of a host cell by recognizing viral component, such as dsRNA through specific receptors, resulting in the production of type- I IFNs, which confer an antiviral state within the invaded as well as surrounding cells. In the present study, fibroblast, monocyte and macrophage cells derived from water Buffalo (Bubalus bubalis) were exposed to a synthetic dsRNA analogue, poly I:C to mimic viral invasion in each cell type. Recognition of poly I:C through cytosolic helicase receptors RIG-I and MDA5 molecule lead to the activation of the RLR pathway, subsequently activating the MAVS-IRF3/7 cascade and the production of antiviral effector molecule like IFNβ and ISGs. Within the different cell types, we identified variability in RLR receptor and IFNβ expression after poly I:C administration. Fibroblasts responded quickly and strongly with IFNβ production, followed by macrophages and monocytes. Despite absolute expression variability among different cell types the expression trend of RLRs pathway genes were similar. Length of poly I:C molecule also influence IFNβ expression in response of RLR pathway. Short (LMW) poly I:C induce stronger IFN-β expression in myeloid (macrophage and monocyte) cells. In contrast long (HMW) poly I:C preferably elicit higher IFNβ expression in non-myeloid (fibroblast) cell. Therefore, MDA5 and RIG-1 plays an indispensable role in eliciting antiviral response in non- immune (fibroblast) host cell. Thus, stimulation of RLR pathway with suitable and potentially cell-type specific agonist molecules successfully elicit antiviral state in the host animal, with fibroblasts conferring a stronger antiviral state compared with the monocytes and macrophages.


Vats, A., Gautam, D., Maharana, J., Chera, J. S., Kumar, S., Werling, D., & De, S. (in press). Poly I:C stimulation in-vitro as a marker for an antiviral response in different cell types generated from Buffalo (Bubalus bubalis). Molecular Immunology, 121, 136-143.

Journal Article Type Article
Acceptance Date Mar 9, 2020
Deposit Date Mar 23, 2020
Journal Molecular Immunology
Print ISSN 0161-5890
Publisher Elsevier
Peer Reviewed Not Peer Reviewed
Volume 121
Pages 136-143
Public URL