C K Souza
The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease
Souza, C K; Rajão, D S; Sandbulte, M R; Lopes, S; Lewis, N S; Loving, C L; Gauger, P C; Vincent, A L
Authors
D S Rajão
M R Sandbulte
S Lopes
N S Lewis
C L Loving
P C Gauger
A L Vincent
Abstract
Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge.
Citation
Souza, C. K., Rajão, D. S., Sandbulte, M. R., Lopes, S., Lewis, N. S., Loving, C. L., …Vincent, A. L. (2018). The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease. Vaccine, 36(41), 6103-6110. https://doi.org/10.1016/j.vaccine.2018.08.072
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 29, 2018 |
Publication Date | Sep 1, 2018 |
Deposit Date | Sep 22, 2018 |
Publicly Available Date | Sep 24, 2018 |
Journal | VACCINE |
Print ISSN | 0264-410X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 36 |
Issue | 41 |
Pages | 6103-6110 |
DOI | https://doi.org/10.1016/j.vaccine.2018.08.072 |
Public URL | https://rvc-repository.worktribe.com/output/1386014 |
Files
11750.pdf
(1.3 Mb)
PDF
You might also like
Detection of Clade 2.3.4.4b Avian Influenza A(H5N8) Virus in Cambodia, 2021
(2022)
Journal Article
Downloadable Citations
About RVC Repository
Administrator e-mail: publicationsrepos@rvc.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search