A A Hill
Towards an integrated food safety surveillance system: a simulation study to explore the potential of combining genomic and epidemiological metadata
Hill, A A; Crotta, M; Wall, B; Good, L; O'Brien, S J; Guitian, J
Authors
M Crotta
B Wall
L Good
S J O'Brien
J Guitian
Abstract
Foodborne infection is a result of exposure to complex, dynamic food systems. The efficiency of foodborne infection is driven by ongoing shifts in genetic machinery. Next-generation sequencing technologies can provide high-fidelity data about the genetics of a pathogen. However, food safety surveillance systems do not currently provide similar high-fidelity epidemiological metadata to associate with genetic data. As a consequence, it is rarely possible to transform genetic data into actionable knowledge that can be used to genuinely inform risk assessment or prevent outbreaks. Big data approaches are touted as a revolution in decision support, and pose a potentially attractive method for closing the gap between the fidelity of genetic and epidemiological metadata for food safety surveillance. We therefore developed a simple food chain model to investigate the potential benefits of combining ‘big’ data sources, including both genetic and high-fidelity epidemiological metadata. Our results suggest that, as for any surveillance system, the collected data must be relevant and characterize the important dynamics of a system if we are to properly understand risk: this suggests the need to carefully consider data curation, rather than the more ambitious claims of big data proponents that unstructured and unrelated data sources can be combined to generate consistent insight. Of interest is that the biggest influencers of foodborne infection risk were contamination load and processing temperature, not genotype. This suggests that understanding food chain dynamics would probably more effectively generate insight into foodborne risk than prescribing the hazard in ever more detail in terms of genotype.
Citation
Hill, A. A., Crotta, M., Wall, B., Good, L., O'Brien, S. J., & Guitian, J. (2017). Towards an integrated food safety surveillance system: a simulation study to explore the potential of combining genomic and epidemiological metadata. Royal Society Open Science, 4, https://doi.org/10.1098/rsos.160721
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 27, 2017 |
Publication Date | Mar 29, 2017 |
Deposit Date | Jun 1, 2017 |
Publicly Available Date | Jun 1, 2017 |
Journal | Royal Society Open Science |
Electronic ISSN | 2054-5703 |
Publisher | The Royal Society |
Peer Reviewed | Peer Reviewed |
Volume | 4 |
DOI | https://doi.org/10.1098/rsos.160721 |
Public URL | https://rvc-repository.worktribe.com/output/1392577 |
Files
10822.pdf
(1.6 Mb)
PDF
You might also like
Downloadable Citations
About RVC Repository
Administrator e-mail: publicationsrepos@rvc.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search